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Abstract— We investigate the effect of information/navigation
platforms in transportation networks. Specifically, we analyze
the outcome when these platforms are owned by for-profit
strategic companies such as Google and Apple. We consider two
business models, one that makes a profit through advertisements
and user information collection, and one that generates revenue
from its user by charging a subscription fee. We show that
social welfare in an environment with a single platform can
be higher than the one when multiple platforms compete
with one another. This is in contrast to the standard result
for classical goods where competition always improves social
welfare. Most importantly, we show that in a competitive
environment with multiple platforms, each platform finds it
optimal to disclose its information perfectly about the current
condition of the network for free. Consequently, we show that
in a competitive market most information platforms must have
an ad-based business model and reveal perfect information
about the transportation network. Our results provide a purely
economic justification on why in practice no navigation appli-
cation attempts to utilize its superior information to improve
the congestion by disclosing partial information as suggested
previously in the literature.

I. INTRODUCTION
GPS-enabled devices and navigation applications such as

Google Maps and Waze enable drivers to make a more
informed routing decision by providing real-time traffic data
and routing recommendations. It has been projected that
by 2020, almost 72% of the U.S. population will own a
smart phone, which corresponds to 93% of all mobile phones
[1]. It has been estimated that %77 of smart phone users
regularly use navigation apps, where Google Maps (67%),
Waze (12%), and Apple Maps (11%) are the most popular
apps among them [2]. Similarly, it has been estimated that
the market size of in-dash navigation systems for cars grows
at 12.47% annually between 2017-2022 [3]. With the wide-
spread use of these new technologies, there is an increasing
interest to study the effect of them on the induced traffic in
transportation networks.

Several theoretical works have investigated the effect of
providing information to drivers [4]–[9]. They have shown
that the consequences of the wide-spread use of these
technologies are ambiguous. They identified instances where
providing information to drivers result in social welfare loss
and an increase in the overall traffic congestion. These results
have been supported by a few empirical evidences on the
negative effect of these technologies on traffic congestion
[10]–[13].
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Motivated by these results, several studies have investi-
gated the problem of information disclosure in transportation
networks [14]–[18]. Using the Bayesian persuasion [19]
and information design [20] frameworks, these studies have
investigated the problem of information mechanism design
so as to reduce the overall traffic congestion and improve
social welfare. They show that it is not always socially
optimal to disclose perfectly all information to drivers. In
contrast, in most environments, the optimal mechanism is to
disclose partial information to drivers and use the routing
recommendations as a coordination device between drivers’
routing decisions [14], [21]. These studies assume that the
information platform is benevolent and design its information
mechanism, i.e., routing recommendation policy, to maxi-
mize the social welfare or minimize the overall traffic.

However, major navigation applications such as Google
Maps or Apple Maps are owned by for-profit companies. It is
hard to justify that their objective is to improve social welfare
rather than their own private profit. We argue that although
these studies demonstrate the potential positive impact an
information platform may have on transportation networks,
they do not adequately explain the decisions made in prac-
tice by major navigation applications/information platforms
operated by for-profit companies such as Google or Apple.

In this paper, we study a problem where information
platforms are designed by strategic entities that have private
objectives. We consider two business models for an informa-
tion platform. In the first business model, which we refer to
as ad-based model, each platform’s objective is to maximize
its number of users. This business model corresponds to
the several popular navigation applications which generate
revenues either from advertisement or information gathering
from users (e.g., Waze, Google Maps). We also consider a
second business model where a platform charges its users
a subscription fee for providing information (e.g., TomTom
and Locus Map); we note that currently almost all fee-based
services are premium services offered as an upgrade option
either for in-dash navigation systems (e.g., live traffic in
TomTom) or as an in-app purchase that targets a very specific
market segment and demographic (e.g., routing preferences
for biking and hiking in Locus Map).

We first consider a scenario with a single platform. In
an ad-based business model, we argue that the platform’s
objective is to maximize the gap between the utility of
a user and that of someone who decides not to use the
platform. Consequently, we show that the optimal policy
for the platform can be different from the socially efficient
policy. With a single fee-based platform, we show that it can
be optimal for the platform to set its price such that only



a fraction of drivers join the platforms. For both business
models, we provide conditions under which the socially
optimal policy is also optimal for a single strategic platform.

Next, we consider a scenario with multiple information
platforms competing over users. We show that the competi-
tion among platforms pushes all of them to reveal informa-
tion perfectly to their users. Moreover, if a platform has a fee-
based business model, it is compelled to set its price to zero
at equilibrium and cannot make a positive profit. Therefore,
we show that in a competitive market, the only business
model that can make a profit in long-run is the ad-based
business model. Additionally, we show that all platforms
must disclose their information completely and no partial
information policy is sustainable as an equilibrium. Our
results reflect the current market outcome observed in prac-
tice, where all major navigation apps are free, and provide
the best routing recommendation to every user given their
information. We also show through a numerical example that
the competition among strategic platforms can result in lower
social welfare compared to that under a single platform.
This deviates from the classical result for a standard good,
where competition improves social welfare. The result can
be explained by the negative externality created by revelation
of additional information in a competitive environment.

The rest of the paper is organized as follows. In Section
II, we present the model. In Section III, we provide a
brief overview of the preliminaries necessary to set up the
problem. In Section IV, we lay out the information design
framework. In Section V, we investigate the outcome when
there exists a single platform. In Section VI, we analyze
the outcome when multiple information platforms exist. In
Section VII, we demonstrate our results through a numerical
example and provide an instance where social welfare is
lower under multiple platforms than that under a single
platform. We conclude in Section VIII. All proofs are omitted
due to space limitation and can be found online in [22].

II. MODEL
Consider a parallel two-link network as in Figure 1. There

is a unit mass of non-atomic agents/drivres who want to
travel from node O to node D on one of the two routes. The
travel time through each route is determined by the condition
of that route as well as the traffic congestion on it. Let a
denote the condition of the first route, called safe route S,
where a is a positive constant. The condition of the second
route, called risky route R, is a random variable θ that takes
values in {θ1, . . . , θN} with probability {p1, . . . , pN}, where
θ1 < θ2 < . . . < θN and

∑n
i=1 pi = 1. Let fs and fr

denote the mass of drivers that travel through the safe and
risky routes, respectively, where fS + fR = 1. If a driver
takes route S his utility is given by

uS = a− fS . (1)

Similarly, if a driver takes route R his utility is given by

uR = θ − fR. (2)

Each driver chooses a route trying to maximize his (ex-
pected) utility. We assume that the value a of the safe

O D
a

safe route S

risky route R

θ ∈ Θ

Fig. 1: The two-link network

route S is fixed and known to all drivers. However, the
value θ of the risky route S is random and not known to
drivers. We assume that the prior common probability mass
function {p1, . . . ,pN} is known to all drivers. Each driver
can gain additional information by subscribing to a platform
that directly or indirectly discloses information about the
realization of θ. III. PRELIMINARIES

Before we proceed to the analysis of outcomes under
strategic information/recommendation platforms, we briefly
discuss three benchmark cases: no information disclosure,
full information disclosure, and socially efficient information
disclosure. These benchmarks are developed based on results
appearing in [23].

A. No information disclosure

Consider a case where there exists no information plat-
form. In this case, drivers choose their routing decisions
based on a common prior belief about θ. Define ∆ :=
a−E{θ} as the prior expected difference between the routes’
conditions. Let x[0,1] denote the projection of x onto the
interval [0,1] given by min{max{x, 0},1}. It is easy to show
that there exists a unique equilibrium where

fS,no info =

[
1

2
+

1

2
∆

]
[0,1]

, fR,no info =

[
1

2
− 1

2
∆

]
[0,1]

. (3)

The expected social welfare W , i.e. the total utility of all
drivers, is given by

W no info =
a+ µ− 1

2
+ max{ |∆| − 1

2
, 0}.. (4)

B. Full information disclosure

Alternatively, consider a case where an information plat-
form reveals to all drivers the realization of θ perfectly. Then,
drivers choose their routing decisions based on the realization
of θ. It is easy to show that there exists a unique equilibrium
outcome under full information where

fS,full info(θ) =

[
1

2
+

1

2
∆θ

]
[0,1]

,fR,full info(θ) =

[
1

2
−1

2
∆θ

]
[0,1]

.

(5)

where ∆θ := a−θ. The social welfare under full information
scenario is given by2

W full info =
a+ µ− 1

2
+ E

{
max{ |∆θ| − 1

2
, 0}
}
. (6)

2In our linear model, if |∆θ| ≤ 1 for all θ, the expected social welfare
under full information case, given by (6), is identical to the one under no
information case, given by (4). However, in general, the social welfare under
no information and under full information are not identical; the difference
between the social welfare under these two regimes could be either positive,
zero, or negative depending on the network topology, functional form of
utility functions, and probability distribution of θ; see [8], [14].



C. Socially Efficient Outcome

It is well known that the equilibrium outcome in con-
gestion games is socially inefficient [24]. For the scenario
considered here, the socially efficient outcome is given by

fs(θ) =

[
1

2
+

∆θ

4

]
[0,1]

, fr(θ) =

[
1

2
−∆θ

4

]
[0,1]

. (7)

Comparing (7) to the routing outcomes (3)under the full
information case, in the socially optimal outcome the dif-
ference between the traffic on the two routes is given by ∆θ

2
instead of ∆θ; that is, mindful of congestion externality, the
social planner does not over-utilize the better route to the
point where there is no difference between the net utility of
the two routes.

Under (7), the optimal social welfare is given by

W efficient =
a+ µ− 1

2
+

∆2

8
+
σ2

8

+ E
{
1{|∆θ|>1}

[
|∆θ| − 1

2
− ∆2

θ

8

]}
, (8)

where 1{|∆θ|>1} denotes the indicator function for event
{|∆θ| > 1}, i.e. when the effect of one route’s condition is
large enough that it results in a greater net utility compared
to the other one even when chosen by all drivers.

IV. INFORMATION DESIGN

An information platform/navigation application with the
knowledge of θ can disclose a variety of informative signals
to the drivers that include the full information and no infor-
mation scenarios discussed above as special cases. In general,
an information platform has to specify (i) the communication
alphabet it uses to send informative signals to every driver,
and (ii) the information policy that for every realization of
θ determines the probability of sending a set of joint signals
to all drivers.

Remark 1. Throughout the paper, we only consider the class
of private information mechanisms and do not explicitly con-
sider public information mechanisms. We say an information
mechanism is private if the platform can disclose different
information (recommendation) to different drivers; similarly,
an information mechanism is public if all drivers receive the
same information. We note that the set of public information
mechanisms is a subset of private information mechanisms.
We conjecture that our main results still hold even if we
restrict attention to public information mechanisms.

A. Revelation Principle

We utilize the revelation principle for information design
[20], and restrict attention, without loss of generality, to
a class of recommendation policy that satisfies a set of
obedience constraints for all drivers. We say an information
disclosure mechanism is a recommendation policy if the
information platform directly recommend a route to each
driver for every realization of θ. That is, the alphabet the
platform uses to communicate with every driver is the same
as the action set for that driver. We say a recommendation

policy satisfies the obedience constraints if for every driver,
it is a best response to take the route recommended to him.

We note that when there are multiple mechanism design-
ers in a market competing with each other, the standard
revelation principle does not hold in general [25]. This is
because with multiple principals there exists a richer set of
mechanisms for each principal in which mechanisms can po-
tentially depend on the market information they gather from
the agents. This may contain information about competing
mechanisms, and enables each principal to choose a more
complex mechanism that utilizes information dependent on
other principals’ mechanisms. For instance, the well-known
“matching price mechanism”, where a buyer sets a price
with a guarantee to match any competitor’s lower price is
an example of such mechanisms, which cannot be captured
by the standard revelation principle. To keep our analysis
tractable and avoid such difficulties, we restrict attention to
mechanisms where an information platform cannot offer a
contingent mechanism where its outcomes depend on other
competing information mechanisms. This is consistent with
how currently information platforms operate in practice.
Therefore, we follow the standard revelation principle to
formulate the problem for each information platform.

B. Obedience Constraints

Following an argument similar to that in [14], a recom-
mendation policy is characterized as x : {θ1, . . . , θN} →
[0, 1] where x(θi) (resp. 1−x(θi)) determines the probability
that a driver receives a recommendation to choose route S
(resp. route R) when θ = θi. We note that, given a realization
of θ, the probability of recommending each route to every
driver is an independent and identically distributed Bernouli
random variable with parameter x(θ).

Consider a simple case where there is only a single
information platform with all drivers subscribed to it. Given
a recommendation policy x(θ), the set of obedience con-
straints can be written as follows. Consider a case where
a driver receives a recommendation to choose route S. A
driver’s ex-post belief about θ = θi is given by P{θ =

θi|recommendation} = p(θi)x(θi)∑N
j=1 p(θ

j)x(θj)
. Therefore, it is a

best response for him to follow the recommendation and
choose route S if and only if

N∑
i=1

p(θi)x(θi)∑N
j=1 p(θ

j)x(θj)
(a− x(θi))

≥
N∑
i=1

p(θi)x(θi)∑N
j=1 p(θ

j)x(θj)
(θ − (1− x(θi))), (9)

where p(θi)x(θi)∑N
j=1 p(θ

j)x(θj)
denote the driver’s ex-post belief that

θ = θi. The left-hand side of (9) denotes the driver’s
expected utility if he follows the recommendation, and right-
hand side of (9) captures his expected utility if he deviates
and choose route R.



Similarly, if a driver receive a recommendation to choose
route R, it is a best response for him to follow the recom-
mendation if and only if

N∑
i=1

p(θi)(1− x(θi))∑N
j=1 p(θ

j)(1− x(θj))
(θ − (1− x(θi)))

≥
N∑
i=1

p(θi)(1− x(θi))∑N
j=1 p(θ

j)(1− x(θj))
(a− x(θi)). (10)

The set of obedience constraints for a case with single
platform where all drivers (with unit mass) are subscribed to
it are given by inequalities (9) and (10). The set of obedience
constraints for scenarios with multiple information platforms
or when not all drivers are subscribed to a platform can
be written similarly; we omit the explicit form of these
constraint due to space limitation.

C. Social Planner

Our main objective in this paper is to study the market
outcome in the presence of strategic information platforms.
The following result is from [14] and concerns an envi-
ronment with a single information platform operated by
a social planner that is a non-strategic and social-welfare
maximizer. We use this result as a benchmark to demonstrate
the market inefficiency because of the profit-seeking behavior
of strategic information platforms.

Theorem 1. The socially efficient outcome xefficient is imple-
mentable through an information mechanism if and only if

σ2 ≥ 2|∆| −∆2. (11)

The result of Theorem 1 can be interpreted as follows.
If in expectation the two routes are identical, i.e. |∆| = 0,
a social planner can always achieve the efficient outcome.
However as |∆| increases, i.e., one route is increasingly
better in expectation, drivers start to develop a preference
for the better route. Therefore, to persuade drivers to change
their behavior the social planner need to possess a higher
informational power, measured as σ2, to achieve the efficient
routing outcome.

V. SINGLE PLATFORM

Consider a monopolistic market where a strategic in-
formation platform provides recommendation services. We
investigate two possible business models for the platform.
In the first business model, users can use the platform
service for free and the platform collects revenue through
targeted advertisement (e.g., Waze, Yelp) and/or information
gathering (i.e., Google Maps, Waze). In the second business
model, the platform sets a subscription fee and collects
revenue by charging its users. In both scenarios, each driver
individually decides to either join the platform or opt out
based on his expected net utility.

Let m denote the population size of platform users, m ≤ 1.
Based on the framework presented in Section IV, let x(θ)
denote the fraction of the platform’s users that receive the

recommendation to take route S. Let y denote the fraction
of the uninformed drivers that take route S. Conditioned on
the realization of θ, define the utility of a driver taking the
safe and risky routes as

us(θ) = a−mx(θ)− (1−m)y, (12)
ur(θ) = θ −m(1− x(θ))− (1−m)(1− y), (13)

respectively. Therefore, the expected utility of uninformed
drivers and the platform’s users are given by

U0 := max{E{us(θ)},E{ur(θ)}, (14)
U1 := E{x(θ)us(θ) + (1− x(θ))ur(θ)}. (15)

In what follows, we investigate the possible outcomes
when there exists a single information platform operating
based on the aforementioned business models.

A. Ad-based platform

The ad-based business model captures existing services
like Waze. Assuming an average profit per each user, the
platform’s revenue is proportional to the size of its user
base given by αm. Therefore, the platform’s objective is to
maximize the population of its users m.

Each driver decides to use the platform if and only if the
expected utility from using the platform is greater than or
equal to that from not using it. Notice that the expected utility
of an uninformed driver also depends on the recommendation
policy x(θ) chosen by the platform. This is different from
the standard mechanism design framework where an agent’s
outside option/reservation utility is assumed to be fixed.

For example, consider the case where the probability dis-
tribution of θ is binary with pi = 0.5 where θ ∈ {1.25, 3.25},
and a = 2. Define recommendation policy xα(θ) as

xα(θ) =

[
1

2
+

∆θ

α

]
[0,1]

.

Let Uα0 and Uα1 denote the expected utility of an uninformed
driver and an informed driver at equilibrium for recommen-
dation policy xα(θ). It is easy to verify that xα satisfies the
obedience constraints for α ≤ 8.5. As seen in Figure 2, both
Uα0 and Uα1 change as α varies. We note that for m = 1,
policy xα(θ) is the same as full information outcome for
α = 2 and is equal to the socially optimal outcome for
α = 4; see (5) and (7). Therefore, as α increases from 2 to
4, Uα1 (i.e. the social welfare) increases. For α ∈ [4, 8.5], Uα1
decreases as the platform under-utilizes the better route for
each realization of θ. As we noted before, Uα0 endogenously
varies as we change α. In the above example, the best outside
option is to choose route R for all 2 ≤ α ≤ 8.5. For
2 ≤ α ≤ 2.5 the platform recommends to all drivers to take
route R when θ = 3.25 and it makes mixed recommendation
(with prob. 0.5 − 0.75

α ) when θ = 1.25. Therefore, as α
increases from 2 to 2.5 the expected congestion for route R
increases, and thus, Uα0 decreases. For α > 2.5 the platform
makes mixed recommendations for both realizations of θ; as
α increases the mixing rate increases faster for θ = 3.25.
Therefore, the expected congestion for route R decreases,



Fig. 2: Uα0 and Uα1 when θ ∈ {1.25, 3.25}, each with
probability 0.5, a = 2, and m = 1.

and thus, Uα0 increases. From Figure 2, it is clear that the
maximum value of U1 − U0 and U1 do not coincide.

The example above demonstrates the additional complex-
ity present in designing a recommendation policy because
of the endogenous dependence of the outside option Uα0
on recommendation policy x(θ). We note that for all α ∈
(2, 8.5) all drivers strictly prefer to join the platforms. The
next result shows that this is not a surprising observation
as the drivers’ preference to join the platform is directly
connected to the obedience constraints.

Lemma 1. For any recommendation policy that satisfies the
obedience constraints, all drivers weakly prefer to join the
ad-based platform, that is, m = 1. They strictly prefer to
join the platform if and only if all obedience constraints are
satisfied strictly.

An immediate corollary of Lemma 1 is that for every
recommendation policy that satisfies the obedience con-
straints, we have U1 ≥ U0. Consequently, within the context
of problem formulation we consider so far, the platform
does not have a unique optimal recommendation policy.
Nevertheless, in real-world applications, there are additional
considerations that may affect the platform’s optimal choice.
One such consideration is the fact that a driver’s decision to
join the platform can be insensitive to a small utility gain
from using the platform. In this case, the platform may want
to maximize the difference between the expected utility when
a driver joins the platform and that when he opts out. In this
case, the optimal policy is given by

max
x(θ)

U1 − U0 (16)

subject to
m = 1, x(θ) ∈ [0, 1]

(12)− (15),

obedience constraints for x(θ).

We note that the maximum gap between Uα1 and Uα0 does
not occur at the social maximizing recommendation policy in
general; see the example above where U1−U0 is maximized
at α−3.25 while U1 (social welfare) is maximized at α = 4.

Due to the endogenous dependency of U0 on x(θ), it

is not straightforward to provide a closed-form solution to
the optimization problem (16). Nevertheless, we can provide
conditions under which the optimal policy for a single ad-
based platform coincides with the socially optimal outcome.

Theorem 2. Consider the optimization problem (16) and
assume that probability distribution of θ−a is symmetric
around 0. Then, the optimal policy is given by

x(θ) =
[1

2
+

∆θ

4

]
[0,1]

, (17)

which is the same as the socially optimal outcome.

The result of Theorem 2 states that there are conditions
where a strategic platform find it optimal to implement a
socially optimal recommendation policy. However, as we
demonstrated above, this is not necessarily the case when
the distribution of θ − a is not symmetric around 0. We
provide an additional numerical example in Section VII,
where the platform’s optimal policy is different from the
socially optimal outcome.

B. Fee-based platform
The second business model for a recommendation plat-

form is the one where it generates revenue by charging its
users a subscription fee p for providing information like
TomTom. The platform’s objective in this case is to maximize
m(p)p where m(p) denotes the size of users who choose
to subscribe to the platform at price p. A driver decides to
subscribe to the platform if the utility gain he gets by joining
the platform is greater than or equal to the subscription fee
p he pays, i.e.,

U1 − p ≥ U0. (18)

Assuming that recommendation policy x(θ) satisfies the
obedience constraints, the left-hand side of (18) denotes the
utility of a driver if he joins the platform. The right-hand
side captures his expected utility if he opts out and chooses
one of the routes without receiving any information from the
platform.

For drivers that opt out, they choose between routes S
and R anticipating the congestion created by all drivers. Let
y denote the probability that an uninformed driver chooses
route S.3 At the equilibrium, we have

y =
[1

2
+

∆− 2mE{x(θ)}
2(1−m)

]
[0,1]

, (19)

given recommendation policy x(θ) that satisfies the obedi-
ence constraints. Therefore, in the fee-based business model,
the platform maximizes its revenue by solving the following
optimization problem:

max
p,m,x(θ)

pm (20)

subject to
m ∈ [0, 1], x(θ) ∈ [0, 1],

(12)− (15), (18), (19),

obedience constraints for x(θ).

3We restrict attention to symmetric strategies for uninformed drivers.



We note that since the platform maximizes pm(p), equa-
tion (18) is satisfied as an equality at an optimal solution.
Therefore, one can write p in terms of m as

p(m):= U1 − U0 (21)

Given y and m, the platform chooses x(θ) to maximize
the utility gain a driver realizes by joining the platform.
Because of the nonlinear projection to [0,1] in (19) (and a
similar projection for x(θ)) it is not straight-forward to find
the closed-form solutions to (20) for a general probability
distribution of θ. Nevertheless, we can determine the solution
to (20) when the distribution of θ−a is symmetric around 0.

Theorem 3. Consider the optimization problem (20) and
assume that probability distribution of θ − a is symmetric
around 0. Then,

(i) for a fixed m, the optimal recommendation policy is
given by

x(θ) =
[1

2
+

∆θ

4m

]
[0,1]

, (22)

y =
1

2
; (23)

(ii) the platform revenue p(m)m is maximized at m∗ ∈
[m, 1] where m = min{1,maxi

|∆θi |
2 }.

We can interpret the result of Theorem 3 as follows. Under
the symmetry assumption for the distribution of θ − a, part
(i) states that maximizing the gap between U1 and U0 is
equivalent to maximizing the welfare of platform users.4 The
result of part (ii) states that the platform maximizes its profit
for a range of user sizes. As the number of platform users
increases, the gain each user enjoys decreases due to the
negative externality other drivers create. Therefore, p(m) is
a decreasing function of m. When m is above m, p(m) ∝
1
m . Therefore, the platform is indifferent between user size
m∗ ∈ [m, 1]. However, for m < m the platform find it
profitable to grow its user size since the negative externality
created by additional users, and thus, the reduction in p(m),
are not as high as to fully neutralize any profit gain.

The result of Theorem 3 provides conditions under which
the socially optimal outcome is an optimal policy for a single
fee-based platform. However, this is not necessarily the case
when the distribution of θ − a is not symmetric. In general,
the platform’s optimal policy is different from the socially
optimal outcome. That is, the platform find it optimal to set
its subscription fee p at a level where only a subset of users
joins the platform, i.e. m < 1. We provide such an example
in Section VII.

VI. PLATFORM COMPETITION

In this section, we analyze the market outcome when
there are multiple information platforms competing with
each other. We assume that all information platforms have
identical information about θ. For ease of exposition, we first

4We note that this is not the case in general. For instance, consider the
example in Section V-A.

describe the model for the case when there are two platforms;
however, our results hold for a general number of platforms.

Let m1 and m2 denotes the size of users for platform 1
and platform 2, where m1 + m2 ≤ 1. For now, we assume
that each driver subscribes to at most one of the platforms.
We later show that our results do not change even if we
relax this assumption. Let x1(θ), x2(θ) and y denote the
fraction of drivers served by platform 1, platform 2, and
uninformed drivers, respectively, that choose the safe route
S. Given x1(θ), x2(θ) and y, the utility of the safe and risky
routes are given by

us(θ) = a−m1x1(θ)−m2x2 − (1−m1 −m2)y (24)
ur(θ) = θ −m1(1− x1(θ))−m2(1− x2(θ))

− (1−m1 −m2)(1− y), (25)

for every realization of θ. The expected utility of an informed
driver is then given by

U0 := E{yus(θ) + (1− y)ur(θ)}.

Similarly, let

U1 := E{x1(θ)us(θ) + (1− x1(θ))ur(θ)},
U2 := E{x2(θ)us(θ) + (1− x2(θ))ur(θ)}.

denote the expected utility of a driver subscribed to platforms
1 and 2.

Remark 2. Throughout this paper, we say a recommendation
policy chosen by a platform is a full/perfect information
closure policy if the resulting equilibrium outcome is the
same as if the platform discloses θ perfectly to its users.

In the following, we investigate how market outcomes are
affected by platform competition.

A. Ad-based platforms

Consider a duopoly market where both platforms generate
revenues through advertisement, and thus, they both aim to
maximize the number of their users. The market equilibrium
constraints, when both platforms are ad-based, are given by

U0 ≥ max{U1, U2}, if m1 +m2 < 1,

U1 ≥ max{U0, U2}, if m1 > 0,

U2 ≥ max{U0, U1}, if m2 > 0.

The following theorem characterizes the equilibrium out-
come under competition with ad-based business model.

Theorem 4. The equilibrium outcome in a market with
multiple ad-based information platforms is the same as the
one under full information disclosure given by

xs∗i (θ) =

[
1

2
+

∆θ

2

]
[0,1]

,

i.e., at the equilibrium all platforms disclose perfect infor-
mation about θ.

The result of Theorem 4 states that the competition among
information platforms drives both platforms towards reveal-
ing their information about θ perfectly. We note that such



an outcome supports current outcomes observed in practice.
That is, all major information platforms, such as Google
Maps, Waze, or Apple Maps claim that they provide the
best routing suggestion (i.e., full information policy) to their
users given their traffic information. We note that the result
does not change if we consider a possibility that drivers can
use both platforms since they do not acquire any additional
information at the equilibrium.

It is known that perfect information disclosure may ac-
tually hurt social welfare [8], [9]. Therefore, compared to
the scenario with a single platform, the competition among
platforms may result in social welfare loss by disclosing full
information to drivers and moving away from the partial
information closure policy arising in a market with single
platform. This is different from the analogous result in a mar-
ket for a classical good, where competition among producers
always results in higher social welfare. We demonstrate such
a phenomenon through a numerical example in Section VII.

B. Fee-based platforms

Next, we consider a duopoly market where both platforms
charge a subscription fee to their users. Let p1 and p2 denote
the subscription fee for platforms 1 and 2. In this case, the
market equilibrium constraints are given by:

U0 ≥ max{U1 − p1, U2 − p2}, if m1 +m2 < 1,

U1 ≥ max{U0, U2 − p2}, if m1 > 0,

U2 ≥ max{U0, U1 − p1}, if m2 > 0.

The following theorem summarizes the result for a com-
petitive market with multiple fee-based platforms.

Theorem 5. Consider a market with multiple information
platforms generating revenue by collecting subscription fee.
There exists a unique equilibrium where

i) all platforms charge zero for their subscription fee, i.e.,
p1 = p2 = 0 and

ii) all platforms disclose full information about θ, i.e.,

xs∗i (θ) =

[
1

2
+

∆θ

2

]
[0,1]

.

The result of Theorem 5 is similar to that of Theorem 4.
That is, even when platforms charge their users for access
to information, the competition among them forces them to
reveal their information perfectly, and provide that informa-
tion at no cost i.e., p1 = p2 = 0. Following an argument
similar to the one given in Section VI-B, such a competition
among fee-based platforms can result in social welfare loss
as it forces the platforms to reveal their information perfectly;
see Section VII.

C. Ad-based and fee-based platforms

The results of Theorems 4 and 5 can be extended to a
market with both ad-based and fee-based platforms. The
proof follows from the result of Theorems 4 and 5.

Proposition 1. In a market with multiple information plat-
forms (ad-based and/or fee-based), there exists a unique

equilibrium outcome where (i) all platforms disclose their
information perfectly, and (ii) all fee-based platforms with
some users charge zero for their subscription fees.

We would like to point out that the result of Proposition 1
implies that a fee-based platform cannot make a profit when
it faces competition from another platform. This is not the
case for an ad-based platform since it generates its revenue
from advertisement and information gathering. Moreover,
even though a social planner can improve the congestion
by disclosing partial information rather full information to
drivers [14]–[18], for-profit information platforms prefer to
disclose their information perfectly at the equilibrium when
they face competition. This is consistent with the market
equilibrium observed in practice where all major navigation
applications such as Google Maps, Waze, or Apple Maps do
not charge any fee and provide their best routing suggestion
to their users. We note that, in practice, the share of fee-
based navigation services is not significant. Most of them are
offered either (i) as an upgrade option for in-dash navigation
systems (such as TomTom) that exploits the complementarity
comfort between their free and fee-based services, or (ii) a
specialized service targeting a very specific demographic and
market segment that does face much competition.

Our result is also applicable to scenarios with a single
dominant platform where the cost of entry for a new platform
is not significant. In this case, the dominant platform finds it
optimal to choose an ad-based business model and provides
full information to its user to deter a potential competitor
from entering the market. We would like to acknowldege that
our model we do not capture drivers’ privacy concern that
a platform collects their information or their inconvenience
with unwanted advertisements. Moreover, we assume that
the platforms market is competitive and the cost of entrance
is not significant. The consideration of these issues can
potentially impact our results.

VII. EXAMPLE

We provide a numerical example and compare the mar-
ket outcomes for different business models and number of
platforms. Let θ ∈ {1, 3.5}, each with probability 0.5, and
a= 2.

No information: We have ∆ = E{θ} − a = 0.25.
Therefore, the no information outcome given by (3)-(4) is

xs = 0.625, W = 1.625.

Social planner: We have σ2 = 1.252 ≥ 2|∆| − ∆2 =
7
16 . Therefore, by Theorem 1, the efficient routing outcome,
given by (7), is implementable by a social planner where

xs(1) = 0.75, xs(3.5) = 0.125, W = 1.83.

Single ad-based platform: We determine the optimal
recommendation policy by maximizing U1 − U0 and solve
the optimization problem (16). The optimal policy and the
resulting social welfare are given by,

xs(1) = 0.6875, xs(3.5) = 0.0625, W = 1.82.



Single fee-based platform: The optimal recommendation
policy is determined by solving the optimization problem
(20). Consistent with part (ii) of Theorem 3, the optimal
policy only covers m = 0.727% of all drivers and we have

xs(1) = 0.937, xs(3.5) = 0.0625, W = 1.82.

Multiple platforms (full information): By Proposition
1, the recommendation policy at the equilibrium is a full
information disclosure policy. The outcome, characterized by
(5)-(6), is given by

xs(1) = 1, xs(3.5) = 0, W = 1.75.

The example above provides an instance where the com-
petition between platforms results in a social welfare loss
compared to the outcome in the scenario with a single
platform. Moreover, it also demonstrates that when platforms
are strategic and profit-seeking, the resulting social welfare
is inferior to the one achievable by a social planner.

VIII. CONCLUSION

We investigated the outcome of a routing game when
drivers can receive information from for-profit information
platforms about the condition of every route in the network.
We considered two business models for a platform. Under
the first model, each platform seeks to generate revenue from
advertisement and user information collection; under the
second model, each platform charges its users a subscription
fee. We showed that there exist instances where the traffic
outcome is worse when multiple platforms exist compared to
that when only a single platform is present. This is in contrast
to the standard results for classical goods in economics.
Moreover, we showed that in a competitive environment, or
when the cost of market entry is not significant, it is optimal
for an information platform to reveal its information com-
pletely to all drivers for free. Consequently, in a competitive
environment all major information platforms must have an
ad-based business model as it is the only profitable business
model. This result is consistent with the current practice in
the real-world where all major navigation applications are
ad-based and free.
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APPENDIX

Proof of Lemma 1. The first part of the lemma directly
follows from the definition of the obedience constraints. We
have,∑

pix(θi)u
S(θi) ≥

∑
pix(θi)u

R(θi),∑
pi(1− x(θi))u

R(θi) ≥
∑

pi(1− x(θi))u
S(θi).

Therefore,

U1 =
∑

pi
[
x(θi)u

S(θi) + (1− x(θi))u
R(θi)

]
≥
∑

pi
[
x(θi)u

S(θi) + (1− x(θi))u
S(θi)

]
=E{uS(θ)}

≥
∑

pi
[
x(θi)u

R(θi) + (1− x(θi))u
R(θi)

]
=E{uR(θ)}.

Thus, U1 ≥ max{E{uS(θ)},E{uR(θ)}} = U0, and all
drivers weakly prefer to join the platform.

Next we prove the second part of the Lemma.
(Only if part): We first prove that if both obedience

constraints are satisfied as strict inequality, then U0 < U1.
That is, at equilibrium, each driver strictly prefer to join. For
obedience constraints, we have:∑

pix(θi)u
S(θi) >

∑
pix(θi)u

R(θi),∑
pi(1− x(θi))u

R(θi) >
∑

pi(1− x(θi))u
S(θi),

for obedience constraints for recommendations to take S and
R, respectively.

Therefore,

U1 =
∑

pi
[
x(θi)u

S(θi) + (1− x(θi))u
R(θi)

]
>
∑

pi
[
x(θi)u

S(θi) + (1− x(θi))u
S(θi)

]
= E{uS(θ)}

>
∑

pi
[
x(θi)u

R(θi) + (1− x(θi))u
R(θi)

]
= E{uR(θ)}.

Thus, U1 > max{E{uS(θ)},E{uR(θ)}} = U0.
(If part): Assume that each driver strictly prefer to join,

but there exists an obedience constraints that is satisfied as
an equality; without loss of generality, assume that this the
first obedience constraint for route S. That is,∑

pix(θi)u
S(θi) =

∑
pix(θi)u

R(θi),∑
pi(1− x(θi))u

R(θi) ≥
∑

pi(1− x(θi))u
S(θi).

Then, we have,

U1 =
∑

pi
[
x(θi)u

S(θi) + (1− x(θi))u
R(θi)

]
=
∑

pi
[
x(θi)u

R(θi) + (1− x(θi))u
R(θi)

]
= E{uR(θ)},

>
∑

pi
[
x(θi)u

S(θi) + (1− x(θi))u
S(θi)

]
= E{uS(θ)}

Therefore, U0 = max{E{uS(θ)},E{uR(θ)}} =
E{uR(θ)} = U1, which is a contradiction.

Proof of Theorem 2. The proof of Theorem 2 follows di-
rectly from the proof of part (i) of Theorem 5. Set m = 1.

Then the optimization problem 16 is identical to the opti-
mization problem 20 when m = 1. From part (i) of Theorem
5, it is optimal for the fee-based platform to implement the
socially optimal recommendation policy.

Proof of Theorem 3. Part(i): By the symmetry assumption,
the distribution of θ is symmetric around a. That is, θi−a =
−(θN+1−i − a) and pi = pN+1−i for 1 ≤ i ≤ N . Without
loss of generality assume that N is an odd number (otherwise
add a realization θ = a with probability 0). Consider the
following change of variable from θ to θ̃ such that θ̃j :=
θN+1

2 +j − a and θ̃−j = θN+1
2 −j

− a for 0 ≤ j ≤ N−1
2 . We

have θ̃j = θ̃−j and P{θ = θ̃j + a} = P{θ = θ̃−j + a}.
Similarly, consider the change of variable from x(θ) to

x̃(θ̃) as x̃(θ̃j) := 1
2 − x(θN+1

2 +j) and x̃(θ̃−j) := 1
2 −

x(θN+1
2 −j

) for 0 ≤ j ≤ N−1
2 . We can rewrite the opti-

mization problem (20) as

max
p,m,x̃(θ̃)

pm

subject to

m ∈ [0, 1], x̃(θ̃) ∈ [−1

2
,−1

2
],

uS(θ̃i)=a+

[
−
(

1

2
− x̃(θ̃i)

)
m− y(1−m)

]
uR(θ̃i)=a+

[
θ̃i −

(
1

2
+ x̃(θ̃i)

)
m− (1− y)(1−m)

]

US =

N+1
2∑

−N+1
2

p(θ̃i)u
S(θ̃i),

UR =

N+1
2∑

−N+1
2

p(θ̃i)u
R(θ̃i),

U0 ≥ US ,
U0 ≥ UR,∑

p(θ̃i)

(
1

2
− x̃(θ̃i)

)[
uS(θ̃i)− uR(θ̃i)

]
≥0, (obed. for S)∑

p(θ̃i)

(
1

2
+ x̃(θ̃i)

)[
uR(θ̃i)− uS(θ̃i)

]
≥0. (obed. for R)

U1 =

N+1
2∑

−N+1
2

p(θ̃i)

[(
1

2
−x̃(θ̃i)

)
uS(θ̃i)+

(
1

2
+x̃(θ̃i)

)
uR(θ̃i)

]
,

p = U1 − U0,

where we write U0 = max{US , UR} as U0 ≥ US and
U0 ≥ UR. In the following, we first show that at the optimal
solution we must have x̃∗(θ̃j) = −x̃∗(θ̃−j) and y∗ = 1

2 .

Let m∗, y∗, and
(
x∗−N+1

2

, . . . , x∗N+1
2

)
denote an optimal

solution. Because of the symmetry between θ̃i and θ̃−i in
the optimization problem between , it is easy to verify that



if (
x̃(θ̃−N+1

2
), . . . , x̃(θ̃N+1

2
)
)

=
(
x∗−N+1

2
, . . . , x∗N+1

2

)
is an optimal solution, then(

x̃(θ̃−N+1
2

), . . . , x̃(θ̃N+1
2

)
)

=
(
−x∗N+1

2
, . . . ,−x∗−N+1

2

)
is also an optimal solution along with m∗, −y∗.

Consider an average of the above solutions given by m∗,
1
2 , and (

x̃(θ̃−N+1
2

), . . . , x̃(θ̃N+1
2

)
)

=(
x∗−N+1

2

− x∗N+1
2

2
, . . . ,

x∗−N+1
2

− x∗N+1
2

2

)
.

It is clear that the average solution does not affect the
linear constraints (the first seven constraints). Moreover, it
also satisfies the obedience constraints. This is because we
can write the obedience constraints for the average solution
by considering duplicate realizations for each θ̃ji , j = 1, 2
where each one has p(θ̃ji ) = 1

2p(θ̃i); for j = 1 one we
make recommendation based on the first solution and for
j = 2 we make recommendations based on the second one.
Therefore, the obedience constraints for the average solution
is simply the average of the obedience constraints for the
original solutions. Thus the obedience constraints are also
satisfied for the average solution.

Now, consider the equation for U1, which is a quadratic
function in x̃(θ̃i). Consider the quadratic terms including
x̃(θ̃i) and x̃(θ̃−i). Using CauchySchwarz inequality, it is easy
to verify that if x̃∗(θ̃i) 6= −x̃(θ̃−i) then the average solution
constructed above results in higher U1, and thus, p is higher
since p = U1 − U0. Therefore, at an optimal solution we
must have y∗ = 1

2 and x̃∗(θ̃i) = −x̃(θ̃−i).
Given that x̃∗(θ̃i) = −x̃(θ̃−i), it is easy to show that U0 =

a+E{θ}−1
2 for every m. Therefore, the platform objective is

to maximize m (U1 − U0). Therefore, given m, the platform
maximizes U1, i.e. the welfare of its users. Thus, given m,
we have

x̃∗(θ̃i) =
[ θ̃i

4m

]
[− 1

2 ,
1
2 ]

Part(ii): Writing U1 explicitly in terms of m and x̃∗(θ̃i),
using y = 1

2 , we have

U1 = a− 1

2
+

N+1
2∑

−N+1
2

θ̃i

[
θ̃i

4m

]
[− 1

2 ,
1
2 ]

− 2m

[
θ̃i

4m

]2

[− 1
2 ,

1
2 ]

Therefore, we can rewrite the objective function as

mp(m)=U1 − U0=m

N+1
2∑

−N+1
2

θ̃i

[
θ̃i

4m

]
[− 1

2
, 1
2
]

− 2m

[
θ̃i

4m

]2
[− 1

2
, 1
2
]

.

The result of part (ii) follows from the first order condition.

Proof of Theorem 4. Suppose the equilibrium outcome is
different from the full information disclosure outcome. Then,
|us(θ) − ur(θ)| is non-zero for some θ ∈ Θ. This implies
that there are users who could increase their expected utility
if they had access to a recommendation policy equivalent
to revealing more information. That is, a platform can
attract them by recommending the better route for those θ.
Therefore, this is not an equilibrium outcome as at least one
platform can do better by revealing more information to such
users.

Proof of Theorem 5. Step 1: We first prove that p1 = p2 =
0 at an equilibrium.

Suppose this is not the case. Then, pi > 0 at an equilib-
rium for some i.

Next, given that pi > 0, we show that mj > 0 and pj > 0
for some j at equilibrium.

If mi = 0, there two cases: (i) mj = 0, and (ii)mj > 0. In
case (i), platform j can disclose the perfect the information
about θ and set pj = pi − ε for small enough ε. Then, all
drivers strictly prefer to join platform j, and platform j can
make a positive profit by such a deviation. Therefore, case
(i) is not possible in an equilibrium. In case (ii), consider the
following scenarios where: (ii-1) pj = 0 and (ii-2) pj > 0.

For case (ii-1), platform j can disclose the perfect the
information about θ and set pj = pj − ε for small enough
ε. Thus, platform j can make a positive profit by such
a deviation. Therefore, case (ii-1) is not possible in an
equilibrium. Under case (ii-2), we have mj > 0 and pj > 0,
and thus, the above condition is satisfied.

Without loss of generality assume that j = 1. Then, there
are two cases: (a) m2 > 0 and (b) m2 = 0.

Consider case (a) where m2 > 0. Then, we have U1−p1 =
U2 − p2. Consider strategy (x̂s1, p̂1) for platform 1 such that
p̂1 := p1 − ε for small enough ε, and

x̂s1 :=

{
x̃s1, w.p. m1

m1+m2

x̃s2, w.p. m2

m1+m2

Then, we have Ũ1 − p̃1 > U2 − p2. Thus, all of the users
served by platform 2 will do better by switching to platform
1. Thus, case (a) cannot arise in an equilibrium.

Consider case (b). Then platform 2, can disclose the same
information as platform 1 and set p2 = p1 − ε for small
enough ε. Then, all users of platform 1 strictly prefer to
join platform 2. Therefore, case (b) also cannot arise in
an equilibrium. Therefore we have p1 = p2 = 0 at an
equilibrium.

Step 2: We show that at an equilibrium the outcome is
the same as the full information disclosure outcome. Assume
that this is not the case. Then, there exists θi such that
us(θi) 6= ur(θi). Then platform 1 can make a positive
profit by disclosing θi perfectly to small enough population
size, at price p1 = ε for small enough ε. Therefore, at
an equilibrium, the outcome must be identical to the full
information disclosure outcome.



Proof of Proposition 1. We present the proof for the case
with one ad-base platform (platform 1) and one fee-based
platform (platform 2). The result for a more general case
follows from the result of Theorem Theorems 2 and 3.

Let m2 > 0. Then, we must have platform 1 disclose
perfect information about θ and p2 = 0. Otherwise, platform
2 can disclose perfect information about θ and attract all
drivers since it provides that information for free.

Now, we show that if m2 = 0, then platform 1 must
disclose perfect information. Assume that this is not the
case. Then, there exists θi such that us(θi) 6= ur(θi).
Then platform 2 can make a positive profit by disclosing
θi perfectly to small enough population size, at price p1 = ε
for small enough ε.

Therefore, at an equilibrium we must have p2 = 0 if m2 >
0. Moreover, the outcome is the same as the full information
disclosure outcome.
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