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Strategic Information Provision in Routing Games

Hamidreza Tavafoghi and Demosthenis Teneketzis

Abstract

We investigate the problems of designing public and private information disclosure mechanisms

by a principal in a transportation network so as to improve the overall congestion. We show that

perfect disclosure of information about the routes’ conditions is not optimal, and paradoxically, may

in fact increase congestion. The principal can improve the congestion (i.e. social welfare) by providing

either a public imperfect information signal about road conditions, or alternatively, coordinated routing

recommendation to drivers based on the road conditions. When the uncertainty about the road conditions

is high relative to the ex-ante difference in the road conditions (i.e.,the value of information is high),

we show that the socially efficient routing outcome is achievable using a private information disclosure

mechanism. Furthermore, we study the problem of optimal dynamic private information disclosure

mechanism design in a dynamic two-time step setting. We consider different pieces of information that

drivers may observe and learn from at t = 1, and investigate qualitative properties of an optimal dynamic

information disclosure mechanisms.

I. INTRODUCTION

A. Background and Motivation

In a transportation network, the condition of every link varies over time due to changes in

weather conditions, accidents, traffic jams, etc. Traditionally, drivers receive public information

about these changes at every route through various infrastructures, e.g. regional traffic updates

via radio broadcasts, and/or variable (dynamic) message signs on road sides displaying specific

information about the onward routes [2]–[4]. In recent years, the advent of GPS-enabled routing
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devices and navigation applications (e.g. Waze and Google maps) has enabled drivers to receive

private, real-time data about the transportation network’s condition for their own intended origin-

destination [5]. The development of these technologies creates new opportunities to reduce

congestion in the network, and improve its overall performance (as measured by various metrics

including social welfare).

Several studies have investigated the effects of information provision to drivers on the social

welfare of the transportation network [6]–[13]. These studies have shown that the effect of

information provision on social welfare is ambiguous, and in general, is not necessarily socially

beneficial. For exogenously fixed information provision structures, these works have identified

instances where the provision of information can in fact increase congestion in parts of the net-

work, leading to a decrease in social welfare. In addition to the above-mentioned theoretical and

experimental works, there are empirical evidences that identify negative impacts of information

provision on the network’s congestion [14]–[18]. Therefore, it is important to investigate how

to design appropriate information provision mechanisms, in a manner that is socially beneficial

and leads to a reduction in the overall congestion in the transportation network.

In this paper, we study the problem of designing a socially optimal information disclosure

mechanism. We consider a congestion game [19], [20] in a parallel two-link network. We consider

an information provider (principal) who wants to disclose information about the condition of

the network to a fixed population of drivers (agents). We assume that the condition of one

route/link, called safe route, is constant and known to everyone, while the condition of the other

route, called risky route, is random and only known to the principal. The principal wants to

design an information disclosure mechanism so as to maximize the social welfare.

We study the problem of designing an optimal information provision mechanism in two cases:

(1) when the principal can only provide information that is publicly available to all drivers, and

(2) when the principal can provide private information to each driver individually.

We first consider a static setting where the drivers do not learn from their past experiences. We

determine a condition under which the principal can achieve the maximum social welfare using

an optimal information provision mechanism. That is, the principal can utilize her superior

information about the network to provide informational incentives so as to align the drivers’

objectives with the overall social welfare. Next, we consider a dynamic two-stage setting where

the drivers learn from their experience at t = 1, and the risky routes’ condition evolves according

to an uncontrolled Markov chain. We consider three scenarios for the drivers’ learning at t = 1:
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(i) the drivers only learn from the information they receive directly from the principal at t = 1,

(ii) in addition to the information they receive directly from the principal at t = 1, the drivers

who take the risky route learn perfectly its condition at t = 1, and (iii) in addition to the

information he receives directly from the principal at t = 1, each driver perfectly observes the

number of cars/drivers on the route he takes at t = 1. Using numerical simulations, we show

that in scenario (i) the principal can achieve the same outcome as in the static setting in which

there is no learning. However, in scenarios (ii) and (iii) the performance of an optimal dynamic

information provision mechanism decreases due to the drivers’ learning only. In particular, we

identify instances in scenario (ii) where it is optimal for principal to reveal perfectly risky route’s

condition at t = 2 so that the drivers do not have an incentive to experiment and learn the risky

route’s condition at t = 1. Moreover, in scenario (iii) we identify instances where it is optimal

for the designer to not implement different routing outcome, i.e. reveal her information about

risky route’s condition, so as to increase her information superiority at t = 2.

B. Related literature

The problems investigated in [6]–[13], [21] are the most closely related to our problem. The

authors of [6], [7] consider a bottleneck model [22] with stochastic capacities, where each route

is modeled as a queue with a first-come, first-served policy, with the service rate determined by

the route’s condition. In [6], the authors consider a scenario where each driver decides the time

and the route/queue he wants to join, considering the behavior of the other drivers. Through

numerical simulations, they show that when drivers receive a low quality/highly noisy signal

about the routes’ conditions, social welfare decreases. In [7], the authors consider a scenario

where each driver does not take into account the other drivers’ response to the information

provided by the principal. They show that social welfare may decrease when the drivers receive

accurate information about the routes, due to the drivers’ overreaction and/or higher congestion

concentration in parts of the network.

The authors of [8], [9] consider a parallel two-link network that is similar to our model. In [8],

the authors assume that only one of the routes has a random condition with two possible values.

They show that social welfare may decrease when the drivers receive public information about

the routes’ conditions irrespective of whether they are risk-neutral or risk-averse. The authors

of [9] assume that the condition of both routes are random. They show that social welfare can
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decrease when the drivers receive public perfect information about the realizations of the routes’

conditions.

The authors of [10]–[12] consider a model where a subset of drivers (informed drivers) has

access to more accurate information about the condition of every route than the remaining drivers.

In [10], the authors assume that the drivers that do not receive the more accurate information

prefer to use high-capacity routes (i.e. highways) rather than low-capacity routes. By numerical

simulation, they show that as the number of informed drivers increases, the congestion in low-

capacity routes (i.e. urban areas) increases. The authors of [12] consider a model similar to ours,

in which the condition of one of the routes is random. They show that when the number of

informed drivers is low, the expected utilities of both groups of drivers are higher compared to

the case where all drivers are uninformed. However, as the number of informed drivers increases,

the social welfare decreases, even compared to the case where all drivers are uninformed. The

authors of [11] study a model where the informed drivers become aware of the existence of

additional routes in a network. They show that the provision of information can create a Braess’

Paradox phenomenon, and thus, can reduce not only the social welfare, but also the utility of

the informed drivers.

In contrast to [6]–[13], [21], which analyze the performance of fixed information provision

mechanisms, in this paper we investigate the problem of designing an optimal information

provision mechanism; the information provision mechanisms analyzed in [6]–[13], [21] are

within the set of feasible mechanisms the principal can choose from when maximizing the

social welfare.

Our work is also related to the literature on improving efficiency in resource allocation

problems with externalities (i.e. congestion games). It is known that the equilibrium outcome in

congestion games is not socially optimal [23]. Several approaches have been proposed in the

literature to address this inefficiency. One approach is to utilize monetary mechanisms in order

to align the agents’ objectives with the social welfare (see [24] and references therein). A second

approach, which is applicable when the principal has control over a fraction of agents, is for the

principal to choose routes for this fraction so as to influence the behavior of selfish agents. This

can lead to improvement in the social welfare (see [25], [26] and references therein). We propose

an alternative approach to improving the efficiency in congestion game by utilizing informational

incentives when the principal has an informational advantage over the agents. Specifically, our

approach can prove promising in transportation networks where the application of tolls (pricing)
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is limited and agents are typically selfish.

Within the economics literature, the problems studied in this paper belong to the class of

information design problems (see [27] and references therein). Our approach to the public

information mechanism design problem (Section IV) is similar to the ones in [28], [29]. Our

approach to the private information mechanism design problems (Section V and VI) is similar

to the ones in [30], [31]. The work in [32] is closely related to our work. The authors of [32]

consider a model with two possible actions where the payoff of one of the actions is not known,

even to the principal. The principal (e.g. the Waze application) faces a group of short-lived agents

that arrive sequentially over time. She wants to design an information mechanism that provides

information about the agents’ past experience to the incoming agents over time. Our work is

different from [32] as (i) in contrast to the single-agent decision problem considered in [32], our

model assumes that the principal faces a population of agents that create negative externalities

on one other at each time step, and (ii) in the dynamic setting, agents are long-lived and learn

from their past (private) experience, while in [32], the agents are short-lived.

The dynamic two-stage problems studied in this paper are also related to literature on strategic

experimentation in economics [33]–[35]. The authors of [36] study a monetary mechanism design

in a principal-agent relationship. Our problem is different from that of [36] since we study an

information disclosure mechanism design instead of a monetary mechanism design. The authors

of [37], [38] study the problem of information disclosure mechanism design in an innovation

contest. Our problem is different from those of [37], [38] since in contrast to their models

where agents do not observe each others’ actions and payoffs unless the principal discloses

information and an agent’s payoff is independent of other agents’ action, in our model agents’

actions create negative externality and influence agents’ payoffs, and each agent may have an

indirect observation about other agents’ actions and payoffs at t = 1.

The information design problems that we consider in this paper are also related to the problem

of designing real-time communication systems [39]–[42]. However, in contrast to these studies,

where the receivers are cooperative and have the same objective as the transmitter, in our problem

the drivers are strategic and have objectives that are different from that of the principal. The

authors of [43] consider a problem of real-time communication with a strategic transmitter and

receiver, Gaussian source, and quadratic estimation cost. They follow an approach that is similar

to that of [29] and our approach for the design of public information disclosure mechanism in

Section IV. However, our problem is different from that of [43] since in our model there exist



6

many agents, and each agent’s utility depends on his action and the routes’ conditions as well

as other agents’ actions. Moreover, in this paper, we study the problem of private information

disclosure mechanism design that is not present in the work of [43].

C. Contribution

We determine optimal public and private information provision mechanisms that maximize the

social welfare in a transportation network. Our results propose a solution to the concern raised

in [6]–[13], [21] about the potential negative impact of information provision on congestion in

transportation networks. We show that the principal can utilize his superior information about the

condition of the network, and provide informational incentives to the drivers so as to improve

the social welfare. When the principal can disclose information to every driver privately, we

show that the principal can benefit from providing coordinated routing recommendations to the

drivers. We identify a condition under which the principal can achieve the efficient routing

outcome in a static setting. Moreover, we consider a dynamic setting with two-time steps under

three scenarios, each capturing a possible piece of information that the drivers can learn from it in

dynamic setting. Using numerical simulations, we discuss the effect of each piece of information

on the solution to the optimal dynamic information mechanism and its qualitative properties.

D. Organization

The rest of this paper is organized as follows. In Section II, we present our model in a

static setting. In Section III, we consider two naive information mechanisms and compare their

outcomes with the socially efficient outcome. We study the problem of designing an optimal

public information mechanism in Section IV. In Section V, we study the problem of designing an

optimal private information mechanism. We consider the design of optimal dynamic information

mechanisms in a two-step setting in Section VI, and investigate the effect of different types

of drivers’ observations on the performance and qualitative properties of an optimal dynamic

mechanism through numerical simulations. We conclude in Section VII. All proofs appear in

the Appendix.

II. MODEL

Consider a two-link network managed by a principal who wants to maximize social welfare

(Figure 1). There is a unit mass of agents traveling from the origin O to the destination D.
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There are two routes/links that agents can take. The top route, denoted route s (i.e. safe route)

has condition a > 0 that is known to all agents and the principal. The bottom route, denoted

route r (i.e. risky route), has a condition θ ∈ Θ := {θ1, . . . , θM}, θ1 < θ2 < . . . < θM , that is

not known to the agents and is only known to the principal. It is common knowledge among the

agents and the principal that θ takes values in {θ1, . . . , θM} with probability {pθ1 , pθ2 , ..., pθM},

respectively. Let xs and xr (where xs+xr = 1), denote the mass of agents that choose route s and

r, respectively. The utility of each agent depends on the condition of the route that he chooses to

travel as well as on the congestion (negative externality) that he observes along his route. Given

xs and xr, let Cs(xs) and Cr(xr) denote the congestion cost at route s and route r, respectively.

The functions Cs(·) and Cr(·) are strictly increasing, with Cs(0) = 0 and Cr(0) = 0. For the

ease of exposition, we assume that Cs(xs) = xs and Cr(xr) = xr. Throughout this paper, we

discuss how our results extend to general congestion functions.

We assume that the utility of an agent taking route s (resp. r) is given by a−Cs(xs) = a−xs

(resp. θ − Cr(xr) = θ − xr); that is, the effect of a route’s condition on an agent’s utility is

separable from the effect of the congestion cost. Therefore, the expected social welfare W is

given by

W := E {xs(a− Cs(xs)) + xr(θ − Cr(xr))} . (1)

We make the following assumption about the possible values of θ.

Assumption 1. The risky route’s types θ are such that θM − Cr(1) ≤ a and a− Cs(1) ≤ θ1.

Assumption 1 ensures that for every realization θ of route r’s condition, there will be a positive

mass of agents taking either route.

The principal wants to design an information disclosure mechanism that provides information

about the condition θ of route r to the agents, so as to maximize the expected social welfare

W . We consider two classes of information disclosure mechanisms by the principal: (i) public

information disclosure mechanisms, where the principal sends a public signal about θ which is

observed by all agents (Section IV), (ii) private information disclosure mechanisms, where the

principal sends a private signal about θ to each agent, and this signal is only observed by that

agent (Section V).

Before proceeding with the study of optimal public and private information disclosure mecha-
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Fig. 1: The two-link network

nisms which maximize social welfare, we present two naive information disclosure mechanisms

in Section III. By exploring the agents’ routing decisions under these two naive information

disclosure mechanisms, along with the socially efficient routing decisions, we will elaborate on

the main insights underlying some of the results appearing in the rest of the paper.

III. NAIVE MECHANISMS

We study two naive information disclosure mechanisms that the principal can employ to

disclose information about the condition θ of route r, namely, the no information disclosure

and full information disclosure mechanisms. We then present the socially optimal outcome and

compare it to the outcomes of the naive mechanisms. Let µ := E{θ} =
∑

θ∈Θ pθθ denote

the expected condition of route r. Define ∆ := a − µ and ∆θ := a − θ as the expected and

realized difference between the conditions of routes s and r. Let σ2 = E
{

(θ − µ)2} denote the

variance of route r’s condition. In the sequel, we characterize the traffic outcome under different

information that the agents may receive as a function of µ, ∆, and ∆θ.

A. No Information Disclosure

Consider an information disclosure mechanism where the principal discloses no information

about θ to the agents. In this case, the expected utility from route r, given by µ− xr, must be

equal to the utility a − xs from route s; this is because otherwise, some agents would switch

from the route with lower utility to the one with higher utility2. Therefore, the traffic at routes

2Note that by Assumption 1, both routes are non-empty for any realization of the condition of the risky route.
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s and r are given by

xs,no info =
1

2
+

1

2
∆, (2)

xr,no info =
1

2
− 1

2
∆. (3)

That is, the difference between the traffic on routes s and r depends on the expected difference

between the routes’ conditions, given by ∆.

Consequently, the expected social welfare W no info under the no information disclosure mech-

anism is given by

W no info =
a+ µ− 1

2
, (4)

where a+µ−1
2

denotes the expected utility of an agent taking either of the routes.

B. Full Information Disclosure

Consider an information disclosure mechanism where the principal reveals perfectly the condi-

tion θ of route r to all agents. In this case, agents choose their route knowing θ. By an argument

similar to the one given above for the no information disclosure mechanism, the utility from

taking either of the routes must be equal. Therefore, the traffic at routes s and r are given by

xs,full info(θ) =
1

2
+

1

2
∆θ, (5)

xr,full info(θ) =
1

2
− 1

2
∆θ. (6)

In this case, the traffic difference between routes s and r depends on the realized difference

∆θ between the routes’ conditions, as opposed to the expected difference ∆ that determines the

outcome under the no information disclosure mechanism.

Using (5) and (6), we can obtain the expected social welfare W full info under the full information

disclosure mechanism as

W full info = E{a+ θ − 2

2
} =

a+ µ− 1

2
. (7)

Remark 1. We note that the expected social welfare W full info under the full information disclosure

mechanism and W no info under the no information disclosure mechanism are the same in the

model of Section II with linear congestion costs. This is because under the full information
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disclosure mechanism the social welfare is linear in θ. As we discuss in Remark 2 below, for

congestion functions Cs(xs) and Cr(xr) that are nonlinear in xs and xr, respectively, the social

welfares under the full information and no information disclosure mechanisms are not identical

in general.

C. Socially Efficient Outcome

When each agent chooses his route, under either the no information or full information

disclosure mechanisms, he does not take into account the congestion (i.e. negative externality) that

his decision creates on the other agents. Therefore, the social welfare under the no information

and full information disclosure mechanisms are different from the one under the socially efficient

outcome. The socially efficient routing outcome is given by

xs,eff(θ) =
1

2
+

1

4
∆θ, (8)

xr,eff(θ) =
1

2
− 1

4
∆θ, (9)

and the corresponding expected social welfare is given by

W eff =
a+ µ− 1

2
+

∆2

8
+
σ2

8
. (10)

We observe that the difference in the traffic of routes s and r is doubled under the full infor-

mation mechanism (see (8) and (9)), where agents make routing decisions selfishly, compared to

the socially efficient routing. This is an instance of the tragedy of commons, where each agent

maximizes his own utility and does not take into account the congestion cost he imposes on the

other agents on his route. Therefore, it may not be optimal for the principal to perfectly reveal

his information about θ to the agents, as in the full information disclosure mechanism.

We now compare the optimal social welfare W eff with the social welfare W no info under the

no information disclosure mechanism. Under the no information disclosure mechanism, agents

do not know θ and make their routing decisions only based on their ex-ante belief about θ

(see (2) and (3)). Therefore, the social welfare under the no information disclosure mechanism,

given by (4) is lower than the efficient social welfare because (i) the agents make their routing

decisions selfishly, and (ii) the agents make their routing decisions without any knowledge about

the realization of θ. The terms ∆2

8
and σ2

8
in (10) capture the social welfare loss due to factors

(i) and (ii) above, respectively.
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In order to reduce the social welfare loss due to the agents’ lack of information about θ, the

principal may want to disclose information about the realization of θ to the agents. As discussed

earlier, disclosing the realization of θ perfectly does not improve social welfare (see (4) and

(7)). Therefore, the principal must utilize her superior information about route r’s condition

to strategically disclose information to the agents and influence their routing decision so as to

improve the expected social welfare. This can be interpreted as providing informational incentives

to the agents that align their objectives with that of the principal.

In the sequel, we explore various information disclosure mechanisms that the principal can

employ to improve the expected social welfare. In Section IV, we explore public information

disclosure mechanisms, where the principal reveals information about the realization of θ which

is publicly observed by all agents. In Section V, we explore private information disclosure

mechanisms, where the principal reveals information to each agent individually through a private

communication channel.

IV. PUBLIC INFORMATION DISCLOSURE

In this section, we consider mechanisms through which the principal reveals public information

about the realization of θ to all agents. For instance, the principal can post traffic information on

public road signs, or broadcast traffic updates through radio stations. Let M denote the set of

all messages through which the principal can reveal information about the realization of θ. For

instance, M can be the set of possible commute times on route r, or the number of congestion-

causing accidents that have happened on route r. Given a message spaceM, a public information

disclosure mechanism can be fully described by ψ : Θ→ ∆(M). For every realization of θ, ψ

determines a probability distribution over the set of messages M that the principal sends. We

note that the no information and full information disclosure mechanisms presented in Section

III can be described as special instances of public information disclosure mechanisms by setting

M = ∅, and M = Θ along with ψ(θ) = θ, respectively.

Given a public information disclosure mechanism (M, ψ), the agents update their belief about

route r’s condition θ after receiving a public message m ∈M as,

P{θ = θ̂|m} =
pθ̂ψ(θ̂)(m)∑
θ̃∈Θ pθ̃ψ(θ̃)(m)

. (11)
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Using an argument similar to the one given in Section III-A, for every message realization

m ∈M, the traffic at routes s and r are given by

xs,public(m) =
1

2
+

1

2
∆m, (12)

xr,public(m) =
1

2
− 1

2
∆m, (13)

where ∆m := a− E{θ|m}.

The principal’s objective is to design a message space M along with a public information

disclosure mechanism ψ so as to maximize the expected social welfare W . Formally,

max
M,ψ

W

subject to (12) and (13).

Even though the principal can influence the agents’ routing decisions for different realizations

of θ by employing various public information disclosure mechanisms (M, ψ), we prove below

that the expected social welfare W is independent of (M, ψ) for the model of Section II.

Theorem 1. For every public information disclosure mechanisms (M, ψ), the expected social

welfare W is given by a+µ−1
2

.

The result of Theorem 1 states that the principal cannot benefit from employing a public

information disclosure mechanism. We would like to note that for the model of Section II (i)

the congestion functions Cs(xs) and Cr(xr) are linear in xs and xr, and (ii) the effect of route

r’s condition θ on the utility of an agent taking route r is linearly separable from the congestion

cost Cr(xr). Because of features (i) and (ii), conditioned on the realization of message m, the

expected social welfare is a linear function of ∆m; this leads to the result of Theorem 1. In a

model where either feature (i) or (ii) is absent, the result of Theorem 1 does not hold.

Remark 2. Consider a model where the congestion costs Cs(xs) and Cr(xr) are nonlinear

functions of xs and xr, respectively. Define a function G : [a− θM , a− θ1]→ [0, 1] as G(δ) :=

{x : Cr(1 − x) − Cs(x) = δ}. Note that since Cs(xs) and Cr(xr) are strictly increasing in

xs and xr, respectively, function G(δ) is well-defined. When Cs(xs) = xs and Cr(xr) = xr, we

have G(δ) = 1
2

+ δ
2
. Under a public information disclosure mechanism (M, ψ), conditioned on
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the realization of message m, the traffics at routes s and r are given by

xs,public(m) = G(∆m), (14)

xr,public(m) = 1−G(∆m). (15)

We can verify that if the function Cs(G(δ)) is convex (resp. concave) in δ, the optimal public

information disclosure mechanism is the no information (resp. full information) mechanism.3 In

particular, if Cs(xs) and Cr(xr) are convex and concave (resp. concave and convex) in xs and

xr, respectively, the function Cs(G(δ)) is convex (resp. concave) in δ; thus, the optimal public

information disclosure mechanism is the no information (resp. full information) mechanism.

However, if the function Cs(G(δ)) is neither convex nor concave in δ, there may exist instances

of a set Θ of possible values for θ, along with a probability distribution over Θ, such that

the optimal public information disclosure mechanisms is a public partial information disclosure

mechanism.

V. PRIVATE INFORMATION DISCLOSURE

In this section, we study various private information disclosure mechanisms that the prin-

cipal can use to reveal information about the realization of θ to the agents so as to improve

the expected social welfare. For instance, the principal can provide individualized and private

information to every agent through GPS-enabled devices such as routing suggestions in smart

phone applications. Under a private information disclosure mechanism, the principal sends a

private signal that is based on the realization of θ to every agent. Similar to a public information

disclosure mechanism, the principal needs to determine (i) a set of messages (i.e. language) that

he wants to use, and (ii) a mapping that determines for every realization of θ the probability

according to which every signal is sent.

One class of private information disclosure mechanisms is the set of mechanisms where the

principal sends to every agent a private and individualized routing recommendation (i.e. which

route to take) based on the realization of θ. We refer to this subset of private information

disclosure mechanisms as recommendation policies. We note that since the agents are strategic,

they do not necessarily follow the principal’s recommendation unless it is a best response for

them. Using the revelation principle argument for information design problems (see [30]), we

3The result directly follows from an application of Jensen’s inequality since W = E{(a−G(·)}.
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can restrict attention, without loss of generality, to the set of recommendation policies where it

is a best response for every agent to follow the recommendation he receives.

To avoid measure theoretic difficulties, we first assume that the principal sends N > 0 different

recommendations to N groups of agents that have equal masses of 1
N

. We then consider the

asymptotic case where N →∞.

Let σN : Θ → ∆({s, r}N) denote the recommendation policy that the principal employs for

a given N . With some abuse of notation, let σN(mN |θ) denote the probability that the principal

sends routing recommendation mN := (mN
1 , ...,m

N
N) ∈ {s, r}N to the N groups of agents,

given that the state realization is θ ∈ Θ. Given a recommendation policy σN , each agent must

be willing to take the recommended route given his information about route r’s condition θ.

This is captured by the following obedience condition for each agent belonging to group n, for

1 ≤ n ≤ N ,

(i) if mN
n = s

1∑
θ∈Θ pθσ

N((s,mN
−n)|θ)

∑
θ∈Θ,mN

−n∈{s,r}N−1

pθσ
N((s,mN

−n)|θ)(a− 1

N

∑
1≤i≤N

1{mN
i =s})

≥
1∑

θ∈Θ pθσ
N((s,mN

−n)|θ)
∑

θ∈Θ,mN
−n∈{s,r}N−1

pθσ
N((s,mN

−n)|θ)(θ − 1

N

∑
1≤i≤N

1{mN
i =r}), (16)

(ii) if mN
n = r

1∑
θ∈Θ pθσ

N((r,mN
−n)|θ)

∑
θ∈Θ,mN

−n∈{s,r}N−1

pθσ
N((r,mN

−n)|θ)(θ − 1

N

∑
1≤i≤N

1{mN
i =r})

≥
1∑

θ∈Θ pθσ
N((r,mN

−n)|θ)
∑

θ∈Θ,mN
−n∈{s,r}N−1

pθσ
N((r,mN

−n)|θ)(a− 1

N

∑
1≤i≤N

1{mN
i =s}). (17)

The above obedience constraints are the analogue of the incentive compatibility constraints

in mechanism design problems, and can be interpreted similarly as follows. The left hand side

of condition (16) (resp. (17)) expresses the expected utility of an agent in group n, 1 ≤ n ≤

N , if he follows the recommendation to take route s (resp. r) given his ex-post belief about

θ after he receives the recommendation, assuming that the other agents are following their

recommendations. The right hand side of condition (16) (resp. (17)) expresses the expected
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utility of an agent in group n, if he deviates from his recommendation and takes route r (resp.

s) instead of s (resp. r) given his ex-post belief about θ. The obedience constraint (16) therefore

requires that it is a best response for every agent to follow the recommendation, given his ex-post

belief about θ, assuming that other agents follow their routing recommendations. We note that

unlike standard mechanism design problems, there is no individual rationality constraint, since

an agent can simply ignore the recommendation and choose any route he wishes.

Let xs,N(θ) ∈ { 1
N
, 2
N
, . . . , N

N
} denote the mass of agents that take route s when the state is

θ under σN . Note that the set of obedience constraints (16) and (17) are linear in σN(·|·) and

identical for all N groups of agents. Therefore, by symmetry, we can restrict attention to the

set of recommendation policies for the principal where she selects N ·xs,N(θ) groups randomly,

recommends to them to take route s, and recommends to the agents in the remaining groups to

take route r.

Therefore, for N → ∞ the set of recommendation policies for the principal can be charac-

terized by y(θ) ∈ [0, 1], where y(θ) denotes the mass of agents receiving the recommendation

to take route s, i.e. xs(θ) = y(θ) and xr(θ) = 1 − y(θ). When the state is θ, the principal

recommends route s (resp. r) to every agent with probability y(θ) (resp. 1− y(θ)) independent

of her recommendation to other agents.

Under the information policy σ, let Uσ(s, θ) := a−y(θ) and Uσ(r, θ) := θ−(1−y(θ)) denote

an agent’s utility from taking routes s and r, respectively, when route r’s condition is θ. The set

of obedience constraints (16) and (17) for each agent can be then written as∑
θ∈Θ

pθy(θ)Uσ(s, θ) ≥
∑
θ∈Θ

pθy(θ)Uσ(r, θ), (18)

∑
θ∈Θ

pθ(1− y(θ))Uσ(r, θ) ≥
∑
θ∈Θ

pθ(1− y(θ))Uσ(s, θ). (19)

Therefore, the problem that the principal faces is to determine a recommendation policy

that maximizes the expected social welfare subject to the obedience constraints above; this
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optimization problem is given by4

max
{y(θ),θ∈Θ}

W

subject to (18) and (19).

A. Implementable Outcomes

To determine an optimal recommendation policy, we first specify the set of feasible routing

outcomes/recommendation policies that satisfy the obedience constraints (18) and (19).

Lemma 1. A routing outcome {xs(θ), xr(θ), xs(θ) +xr(θ) = 1, θ ∈ Θ} is implementable if and

only if

E
{
xs(θ)

[(
1

2
+

∆θ

2

)
− xs(θ)

]}
≥ 0, (20)

E
{
xr(θ)

[(
1

2
+

∆θ

2

)
− xr(θ)

]}
≥ 0. (21)

We note that the outcomes under the no information and full information disclosure policies,

given by (2)-(3) and (5)-(6), respectively, satisfy conditions (20) and (21) with equality. That

is, they are the corner points of the set of implementable outcomes. The set of implementable

outcomes is depicted in Figure 2 for an example with |Θ| = 2.

B. Incentivizing the Socially Efficient Routing

Using the result of Lemma 1, we can determine the necessary and sufficient condition to

implement the efficient allocation {xs,eff(θ), xr,eff(θ), θ ∈ Θ} through the recommendation policy

below.

Theorem 2. The efficient routing policy xeff is implementable through an information disclosure

policy if and only if

σ2 ≥ 2|∆| −∆2. (22)

4We note that we can restrict attention, without loss of optimality, to policies where y(θ) is deterministic. This is because
the set of obedience constraints only depends on the expected value of y(θ). Moreover, the principal’s objective is a concave
function of y(θ) (see (1)). Thus, by the Jensen’s inequality, an optimal recommendation policy is a recommendation policy
where y(θ) is deterministic for every θ ∈ Θ.
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Fig. 2: The set of implementable outcomes for a = 2, Θ = {L,H}, L = 1.5, H = 2.5, pL = 0.6,
and pH = 0.4.

We note that |∆| = |a−µ|
m
≤ 1 by Assumption 1; thus, 2|∆| −∆2 ≥ 0. For ex-ante symmetric

routes (i.e. µ = a), we have ∆ = 0, and the efficient outcome is always implementable for any

distribution of θ. However, if the two routes are ex-ante asymmetric (i.e. µ 6= a), to incentivize

the efficient policy, the variance of θ must be greater than the threshold (22), which depends on

the expected difference between the routes. We further elaborate on this issue below.

As we discussed above, we can view the routing recommendation by the principal to the agents

as an informational incentive that she provides so as to influence the routing decision of each

agent. When the routes are symmetric, i.e. ∆ = 0, under the no information disclosure policy,

each agent (at equilibrium) is indifferent between taking either of the routes; see (2) and (3).

Therefore, the principal can persuade (i.e. recommend to) an agent to take a specific route even

when she does not have significant information superiority over him (i.e. σ2 is small). However,

when the routes are asymmetric, i.e. ∆ 6= 0, under the no information disclosure policy, each

agent has a strict preference over route s (resp. r) if ∆ > 0 (resp. ∆ < 0). Thus, the principal

needs a strictly positive incentive to persuade an agent to take the route that is not aligned with

his original preference. This implies that the information the principal holds must be valuable

enough to enable her to offer adequate informational incentives to persuade an agent to follow

her recommendation. Condition (22) captures the value of the principal’s information about θ in

terms of σ2.

Figure 3 depicts the maximum expected social welfare the principal can achieve for different
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combinations of σ2 and ∆ by utilizing a recommendation policy in an example with |Θ| = 2. We

note that for pairs (σ,∆) that satisfy condition (22) of Theorem 2, the principal can implement

the socially efficient outcomes. However, when this condition is violated, the performance of the

best outcome decreases.
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Fig. 3: The best implementable outcomes with respect to the socially efficient outcome for a = 2,
Θ = {L,H}, and pL = pH = 0.5.

Remark 3. A result similar to that of Theorem 2 can be obtained for general congestion functions

Cr(xr) and Cs(xs), where the condition that is the analogue of (22) depends on higher order

moments of θ.

VI. DYNAMIC SETTING

In this section, we study a dynamic setting with time horizon T = 2, i.e t ∈ {1, 2}, where route

r’s condition θt, t = 1, 2, has uncontrolled Markovian dynamics with transition probability P ∈

R|Θ|×|Θ|. We assume that P[pθ1 , . . . , pθM ]T = [pθ1 , . . . , pθM ]T , that is, the marginal probability

distribution of θ2 is the same that of θ1.

We consider a situation where the same group of agents commute from the origin to the

destination every day. Therefore, agents at t = 2 may have learnt new information from their

observations at t = 1. We study the problem of designing an optimal dynamic private information

disclosure policy by the principal. The investigation of this two-step dynamic mechanism provides

some insight into how the results for a static setting change in a dynamic setting where agents

can learn from their past experience. We note that by the result of Theorem 1, the study of
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dynamic public information disclosure mechanisms in a dynamic setting does not introduce any

issue in addition to those present in the study of static mechanisms within the context of the

model of Section II.

We consider three scenarios depending on the agents’ observations at t = 1 as follows: (i)

agents do not make any environmental observations (i.e., neither the condition of the risky route

nor the traffic (i.e. mass of agents/cars) on routes s and r, (ii) agents who take route r observe

only its condition θ1, and (iii) each agent observes only the traffic on the route he takes at

t = 1. In a real world situation, the agents can have noisy observations of θ1 as well as a

noisy observation of the number of cars traveling the route. Therefore, the study of the three

scenarios described above will allow us to understand the effect of each type of learning (piece

of information) on the solution of the dynamic problem and uncover its qualitative properties.

In all of these scenarios, we assume that the principal’s routing recommendation policy at

t = 2 does not depend on the agent’s decisions at t = 1. We make this assumption for the

following reasons. (1) If the principal wants to incorporate the agents’ past decisions into her

routing recommendation policy, she needs to monitor every agent’s location over time; this may

not be feasible due to technological limitations and/or privacy concerns. (2) If the principal can

incorporate the agents’ past decisions into her routing recommendation policy, then her optimal

strategy would be to not disclose any further information to every agent that does not follow her

routing recommendation (i.e. punish him). On one hand, such a punishment scheme may not be

desirable in practical settings. On the other hand, if such a punishment scheme is permitted, then

the principal can incentivize any desired routing behavior in a dynamic setting with long enough

horizon if the agents are sufficiently patient and θt does not have deterministic dynamics (i.e.

the principal has information superiority over the agents for all times). Therefore, in the sequel

we restrict attention to the class of dynamic recommendation policies where the principal does

not observe/incorporate the agents’ decisions at t = 1 when designing her policy.

As a result, the set of recommendation policies for the principal can be characterized by

σ := {y1(θ1), ys2(θ2, θ1), yr2(θ2, θ1), ∀θ1, θ2 ∈ Θ}. The principal’s routing policy at t = 1 is given

by y1(θ) (resp. 1− y1(θ)), which denotes the probability that route s (resp. r) is recommended

when route r’s condition is θ1. For t = 2, ys2(θ2, θ1) (resp. yr2(θ2, θ1)) denotes the probability that

route s is recommended to agents who took route s (resp. r) at t = 1, when route r’s condition

at t = 1 and t = 2 are θ1 and θ2, respectively. Similarly, 1 − ys2(θ2, θ1) (resp. 1 − yr2(θ2, θ1))

denotes the probability that route r is recommended to agents who took route s (resp. r) at
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t = 1, when route r’s condition at t = 1 and t = 2 are θ1 and θ2, respectively.

A. Case (i): No Environmental Observations

Consider a situation where the agents do not make any observations about the road condition

θ1 and/or the number of agents at the route they took at t = 1. Therefore, the agents infer

information about θ1 only based on the recommendation that they receive at t = 1.

Let

Uσ
2 (s, θ2, θ1) := a− y1(θ1)ys2(θ2, θ1)− (1− y1(θ1))yr2(θ2, θ1),

Uσ
2 (r, θ2, θ1) := θ2 − y1(θ1)(1− ys2(θ2, θ1))− (1− y1(θ1))(1− yr2(θ2, θ1)),

denote the utility of routes s and r at t = 2 given that all agents follow their recommendations.

Moreover, define,

Pσ{θ2, θ1, s, s} = ys2(θ2, θ1)y1(θ1)P(θ2, θ1)pθ1 ,

Pσ{θ2, θ1, s, r} = yr2(θ2, θ1)(1− y1(θ1))P(θ2, θ1)pθ1 ,

Pσ{θ2, θ1, r, s} = (1− ys2(θ2, θ1))y1(θ1)P(θ2, θ1)pθ1 ,

Pσ{θ2, θ1, r, r} = (1− yr2(θ2, θ1))(1− y1(θ1))P(θ2, θ1)pθ1 .

Then the set of obedience constraints for t = 2 are as follows:

(a) Recommendation s at t = 2 and s at t = 1:∑
θ1,θ2∈Θ

Pσ{θ2, θ1, s, s}U2(s, θ2, θ1) ≥
∑

θ1,θ2∈Θ

Pσ{θ2, θ1, s, s}U2(r, θ2, θ1). (23)

(b) Recommendation s at t = 2 and r at t = 1:∑
θ1,θ2∈Θ

Pσ{θ2, θ1, s, r}U2(s, θ2, θ1) ≥
∑

θ1,θ2∈Θ

Pσ{θ2, θ1, s, r}U2(r, θ2, θ1) (24)

(c) Recommendation r at t = 2 and s at t = 1:∑
θ1,θ2∈Θ

Pσ{θ2, θ1, r, s}U2(r, θ2, θ1) ≥
∑

θ1,θ2∈Θ

Pσ{θ2, θ1, r, s}U2(s, θ2, θ1) (25)
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(d) Recommendation r at t = 2 and r at t = 1:∑
θ1,θ2∈Θ

Pσ{θ2, θ1, r, r}U2(s, θ2, θ1) ≥
∑

θ1,θ2∈Θ

Pσ{θ2, θ1, r, r}U2(r, θ2, θ1) (26)

We note that since the agents’ observations at t = 1 include only the routing recommendation

they receive at that time, the agents act myopically at t = 1, as they cannot learn additional

information by themselves. Thus, the set of obedience constraints at t = 1 are the same as those

of the static problem; these constraints are given by∑
θ1∈Θ

pθy1(θ1)Uσ
1 (s, θ1) ≥

∑
θ1∈Θ

pθy1(θ1)Uσ
1 (r, θ1), (27)

∑
θ1∈Θ

pθ(1− y1(θ1))Uσ
1 (r, θ1) ≥

∑
θ!∈Θ

pθ(1− y1(θ1))Uσ
1 (s, θ1), (28)

where Uσ
1 (s, θ1) = a− y1(θ1) and Uσ

1 (r, θ1) = θ1 − (1− y1(θ1)).

The expected social welfares at t = 1 and t = 2 are given by

W1 :=
∑
θ1∈Θ

pθ1 [y(θ1)Uσ
1 (s, θ1) + (1− y(θ1))Uσ

1 (r, θ1)] , (29)

W2 :=
∑

θ1,θ2∈Θ

pθ1P(θ2, θ1)
[[
y(θ1)ys2(θ2, θ1) + (1− y(θ1))yr(θ2, θ1)

]
Uσ

1 (s, θ2, θ1) (30)

+
[
y(θ1)(1− ys2(θ2, θ1)) + (1− y(θ1))(1− yr2(θ2, θ1))

]
Uσ

2 (r, θ2, θ1)
]

Therefore, the optimal routing recommendation policy by the principal when the agents do

not have any environmental observations is given by the solution to the following optimization

problem

max
σ

W1 +W2

subject to (23)− (28).

In this paper, we do not provide a closed solution to the above maximization problem for a

general transition matrix P. Nevertheless, we consider two special cases below: (a) when θ2 is

identically distributed and independent of θ1 (i.e. no correlation), and (b) when θ2 is identical to

θ1 (i.e. perfect correlation). We argue below that that for special cases (a) and (b) the performance

of an optimal dynamic recommendation policy per time step is equal to that of optimal static

recommendation policy.
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For case (a), it is easy to verify that the repetition of the optimal static recommendation policy

is an optimal dynamic recommendation policy. For case (b), at t = 1, the optimal static routing

policy is implementable since the obedience constraints at t = 1 are identical to those in the

static problem, At t = 2, consider the recommendation policy ys(θ2) = 1 and yr(θ2) = 0. That

is, at t = 2, the principal recommends to every agent to take the same route he took at t = 1.

If an agent is willing to follow his recommendation at t = 1, then he is also willing to take the

exact route for the next day, since he does not learn any new information after t = 1, and route

r’s condition remains the same. Therefore, ys(θ2) = 1 and yr(θ2) = 0 is implementable at t = 2.

It is easy to verify that the performance of the dynamic recommendation policy described above

is identical to that of the optimal static recommendation policy.

Given a general transition matrix P, every agent forms an updated belief about θ1 after

receiving his recommendation at t = 1. As the correlation between θ1 and θ2 increases, the

information that the agent learns at t = 1 becomes more valuable to him, and consequently, the

principal’s information superiority decreases. The argument given above for case (b) states that

even when θ1 = θ2, the principal can achieve the same expected social welfare at t = 2 as in the

static setting. Therefore, we conjecture that the (partial) results we proved above for the special

cases (a) and (b), hold in general for any correlation between 0 and 1.

Conjecture 1. For every transition matrix P, the performance of an optimal dynamic recom-

mendation policy per time step is equal to that of an optimal static recommendation policy.

We examine the above conjecture through a numerical simulation below. Consider a setting

where Θ = {L,H} with pL = pH = 0.5. Assume that the transition matrix P is given by

P :=

 pL + ε
2

pL − ε
2

pH − ε
2

pH + ε
2

 , (31)

where ε ∈ [0, 1] denotes the persistence (i.e. correlation) of route r’s condition from t = 1 to

t = 2. Figures 4-6 depict the optimal dynamic recommendation policies vs. different values of

ε for three pairs of σ2 and ∆. As seen in Fig. 4a-6a, in all three examples the performance

of the dynamic recommendation policy per time step is the same as in the optimal static

recommendation policy for different values of ε. Moreover, the total number of cars at each

route at t = 1, 2 are identical under the optimal dynamic recommendation policy; see Figures

4b-6b.
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Fig. 4: Case (i) - the optimal dynamic recommendation policy for different values of persistence
ε, for θ ∈ {L,H}, L = 1.5, H = 2.5, pL = pH = 0.5 (∆ = 0, σ2 = 0.25)

In the first two examples (see Figures 4 and 5), the pair (σ2,∆) satisfies condition (22) of

Theorem 2; thus, the performance of the optimal dynamic and static recommendation policies

are the same as the efficient social welfare. However, in the third example (see Figure 6), where

the pair (σ2,∆) does not satisfy condition (22), the performance of the optimal dynamic and

static recommendation policies are inferior to that of the social welfare maximizing policy.

In Section V-B, we argued that σ2 represents a measure of the principal’s power in terms

of the informational incentives she can provide to the agents. Moreover, we argued that ∆

indicates the agents’ ex-ante preference towards one of the routes. Accordingly, we interpreted

the condition of Theorem 2 as requiring that the principal’s informational power to be greater

than the agents’ ex-ante preference towards one of the routes. A similar interpretation can be

given here by comparing the recommendation outcomes for different pairs of (σ2,∆). As seen

in Figures 4c and 4d, when the agents do not have an ex-ante preference towards either of the

routes (i.e. ∆ = 0), the optimal recommendation policy prescribes the same routing suggestion
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(d) The recommendation outcome at t = 2 for θ1 = H

Fig. 5: Case (i) - the optimal dynamic recommendation policy for different values of persistence
ε, for θ ∈ {L,H}, L = 1.6, H = 2.6, pL = pH = 0.5 (∆ = 0.1, σ2 = 0.25)

for all groups of agents at t = 2 irrespective of what they have learnt at t = 1. As the agents

develop an ex-ante preference towards one of the routes (see Figure 5 where ∆ = 0.1), the

optimal recommendation policy prescribes the same routing suggestion for low values of ε;

but as ε increases, the optimal recommendation policy prescribes different routing suggestions

depending on what every agent has learnt at t = 1. When agents have a high ex-ante preference

towards one of the routes (see Figure 5 where ∆ = 0.2), the optimal recommendation policy

prescribes different routing suggestions for every value of ε 6= 0 depending on what every agent

has learnt at t = 1.

B. Case (ii): Observing θ

Consider a situation where agents who take route r at t = 1 observe θ1 perfectly. Therefore,

at t = 2 agents have heterogeneous/asymmetric information about θ2 depending on which route

they took at t = 1.
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Fig. 6: Case (i) - the optimal dynamic recommendation policy for different values of persistence
ε, for θ ∈ {L,H}, L = 1.7, H = 2.7, pL = pH = 0.5 (∆ = 0.2, σ2 = 0.25)

As a result, the set of obedience constraints at t = 2 is as follows:

(a) Recommendation s at t = 2 and s at t = 1:∑
θ1,θ2∈Θ

Pσ{θ2, θ1, s, s}U2(s, θ2, θ1) ≥
∑

θ1,θ2∈Θ

Pσ{θ2, θ1, s, s}U2(r, θ2, θ1). (32)

(b) Recommendation s at t = 2 and r at t = 1: for every θ1 ∈ Θ∑
θ2∈Θ

Pσ{θ2, s, r}U2(s, θ2, θ1) ≥
∑
θ2∈Θ

Pσ{θ2, s, r}U2(r, θ2, θ1) (33)

(c) Recommendation r at t = 2 and s at t = 1:∑
θ1,θ2∈Θ

Pσ{θ2, θ1, r, s}U2(r, θ2, θ1) ≥
∑

θ1,θ2∈Θ

Pσ{θ2, θ1, r, s}U2(s, θ2, θ1) (34)
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(d) Recommendation r at t = 2 and r at t = 1: for every θ1 ∈ Θ∑
θ2∈Θ

Pσ{θ2, θ1, r, r}U2(r, θ2, θ1) ≥
∑
θ2∈Θ

Pσ{θ2, θ1, r, r}U2(s, θ2, θ1) (35)

We note that the obedience constraints (32) and (34) are the same as (23) and (25). This is

because if an agent takes route s at t = 1, his only new information at t = 2 is the routing

recommendation that he receives at t = 1, and the situation at t = 2 is similar to the scenario

with no environmental observations in Section VI-A. However, if an agent takes route r at

t = 1, he observes θ1 perfectly. Therefore, for every possible value of θ1 at t = 1, there exists

a corresponding obedience constraint at t = 2 expressed (33) and (35).

Since agents can learn/observe θ1 at t = 1 by taking route r, the agents’ incentives to follow

the principal’s routing recommendation are different from those in a static setting. An agent

may want to deviate from the recommendation to take route s and instead take route r so as to

observe θ1; he can then utilize this observation to his benefit, as he now has better information

about route r’s condition at t = 2. In other words, an agent can coordinate his routing decision

at t = 2 with his routing decision at t = 1. Therefore, the set of obedience constraints at t = 1

must consider all possible future plans that an agent can utilize at t = 2 after his deviation at

t = 1; this set of obedience constraints can be described as follows:

(a) Recommendation s at t = 1: for every λ : {s, r} ×Θ→ {s, r}

∑
θ1∈Θ

pθ1y(θ1)

[
Uσ

1 (s, θ1) +
∑
θ2∈Θ

P(θ2, θ1)
(
ys2(θ2, θ1)Uσ

2 (s, θ2, θ1).

+(1− ys2(θ2, θ1))Uσ
2 (r, θ2, θ1)

)]
≥∑

θ1∈Θ

pθ1y(θ1)

[
Uσ

1 (r, θ1) +
∑
θ2∈Θ

P(θ2, θ1)
(
ys2(θ2, θ1)Uσ

2 (λ(s, θ1), θ2, θ1)

+(1− yt2(θ2, θ1))Uσ
2 (λ(r, θ1), θ2, θ1)

)]
, (36)
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(b) Recommendation r at t = 1: for every λ : {s, r} → {s, r}

∑
θ1∈Θ

pθ1(1− y(θ1))

[
Uσ

1 (r, θ1) +
∑
θ2∈Θ

P(θ2, θ1)
(
yr2(θ2, θ1)Uσ

2 (s, θ2, θ1).

+(1− yr2(θ2, θ1))Uσ
2 (r, θ2, θ1)

)]
≥∑

θ1∈Θ

pθ1(1− y(θ1))

[
Uσ

1 (s, θ1) +
∑
θ2∈Θ

P(θ2, θ1)
(
yr2(θ2, θ1)Uσ

2 (λ(s), θ2, θ1)

+(1− yr2(θ2, θ1))Uσ
2 (λ(r), θ2, θ1)

)]
. (37)

In the obedience constraints above, an agent’s plan at t = 2 after his deviation at t = 1 is

denoted by λ. If an agent deviates from a recommendation to take route s at t = 1 and takes

route r instead, his plan λ at t = 2 depends on his observation of θ1 as well as his routing

recommendation at t = 2 (see (36)). If an agent deviates from a recommendation to take route r

at t = 1 and instead takes route s, his plan λ at t = 2 depends only his routing recommendation

at t = 2 since he does not observe θ1 at t = 1 (see (37)).

Consequently, the optimal routing recommendation policy by the principal, when agents taking

route r at t = 1 observe θ1, is given by the solution to the following optimization problem

max
σ

W1 +W2

subject to (32)− (37).

The above optimization problem has 6 + 2|Θ| + 22|Θ| number of constraints, which grows

exponentially in |Θ|, making it difficult to provide a closed form solution to the above problem

in general. Therefore, we investigate the properties of an optimal dynamic recommendation

policy, when agents can observe θ1, through numerical simulations below.

Consider a setting similar to the one in Section VI-A, where Θ = {L,H} with pL = pH = 0.5

and the transition matrix P is given by (38). Figures 7-8 depict the optimal dynamic recommen-

dation policies vs. different values of ε for two pairs of σ2 and ∆. As seen in Figures 7a-8a, in

both examples the performance of the dynamic recommendation policy is decreasing in ε.

In the first example (see Figure 7)), the pair (σ2,∆) satisfies condition (22) of Theorem
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2. Therefore, for low values of ε, where the information the agents learn at t = 1 does not

reduce the principal’s information superiority to the point where condition (22) is not satisfied

at t = 2, the principal can implement the efficient routing policy (see Figure 7a)). However,

as ε increases, the principal cannot implement the efficient routing at t = 1, 2. As a result, the

optimal recommendation policy is different from the efficient routing policy for higher values

of ε (see Figure 7b)). Moreover, for higher values of ε the optimal recommendation policy at

t = 2 depends on the route an agent took at t = 1 (see Figures 7c and 7d). We note that for

ε = 1, yr(L,L) = 1 and yr(H,H) = 0. This is because, when ε = 1, an agent who takes route r

at t = 1 perfectly knows θ2 since θ2 = θ1. Therefore, an agent who takes route r (i.e. observes

θ1) at t = 1 always chooses the route with the better condition at t = 2.

In the second example (see Figure 8), the pair (σ2,∆) does not satisfy condition (22) of

Theorem 2. Therefore, the performance of the optimal dynamic recommendation policy is strictly

decreasing in ε for all values of ε (see Figure 8a). Moreover, the optimal recommendation policy

at t = 1, 2 is always different from the efficient routing policy (see Figure 8b). As seen in Figures

8c and 8d, for all ε 6= 0, the optimal recommendation policy at t = 2 depends on which route

an agent took at t = 1. We note that when ε = 1, the optimal routing recommendation policy at

t = 2 results in the same traffic on the routes as the one under the full information disclosure

mechanisms (see Figure 8b). That is, for very high values of ε, where the agents have considerable

incentive to experiment at t = 1 by taking route r, the principal promises to perfectly disclose

his information at t = 2 so that the agents are willing to follow her recommendation at t = 1. As

a consequence, in contrast to Figures 7c and 7d, in Figures 8c and 8d we have yr(L,L) 6= 1 and

yr(H,H) 6= 0 for ε = 1. This is because under the optimal recommendation policy the utility

from taking either route is the same when ε = 1, and thus, an agent is indifferent between them

even though he knows θ2 perfectly.

C. Case (iii): Observing the Traffic

Consider a situation where each agent observes the traffic on the route he has taken at t = 1,

, given by y1(θ1) or 1− y1(θ1). Since we assume that there exists a unit mass of agents, which

is common knowledge among all agents, each agent can determine the traffic at t = 1 on both

routes, and thus, all agents have identical information at t = 2. Consequently, the set of obedience

constraints for t = 1, 2 are similar to that of the static problem and are given by (18) and (19).

Therefore, when the agents observe the traffic at t = 1, the problem of designing an optimal
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Fig. 7: Case (ii) - the optimal dynamic recommendation policy for different values of persistence
ε, for θ ∈ {L,H}, L = 1.2, H = 2.8, pL = pH = 0.5 (∆ = 0, σ2 = 0.64)

dynamic recommendation policy does not introduce any conceptual issue in addition to those

present in the study of an optimal static recommendation policy. In the following, we argue

that as the correlation between θ1 and θ2 increases the performance of the dynamic optimal

recommendation policy decreases. Moreover, we show that when the correlation between θ1

and θ2 is high the designer’s optimal recommendation policy at t = 1 is a partial information

disclosure mechanism.5

We consider two classes of recommendation policies for the designer: (a) dynamic separating

recommendation policies in which for every θ̂1 6= θ̃1, θ̂, θ̃ ∈ Θ, we have y1(θ̂1) 6= y1(θ̃1), and

5For the sake of discussion we restrict attention to deterministic policies at t = 1. We can show that this restriction is without
loss of optimality. For t = 2, fix the recommendation policy at t = 1. Then by an argument similar to the one given in the static
setting in Section V, we can restrict without loss of optimality, to deterministic recommendation policies. For t = 1, fix the
recommendation policy at t = 2, which is a deterministic recommendation policy. Then the problem of designing the optimal
recommendation policy for t = 1 can be written as a linear program in terms of the probabilities of different routing policies
for every realization of θ1 (see [31] and [44]). It is known that in a linear program, the optimal solutions are the corner points.
Therefore, under the optimal recommendation policy the probability of each routing policy is either 0 or 1. Therefore, we can
restrict attention to the set of deterministic policies without loss of optimality.
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(d) The recommendation outcome at t = 2 for θ1 = H

Fig. 8: Case (iii) - the optimal dynamic recommendation policy for different values of persistence
ε, for θ ∈ {L,H}, L = 1.7, H = 2.7, pL = pH = 0.5 (∆ = 0.2, σ2 = 0.25)

(b) dynamic pooling recommendation policies in which there exists θ̂1 6= θ̃1, θ̂, θ̃ ∈ Θ, we have

y1(θ̂1) = y1(θ̃1).

First, consider a case where the principal employs a separating recommendation policy. As

argued above, the agents can infer perfectly θ1 at t = 1. Therefore, as ε increases the principal’s

information superiority is reduced at t = 2, and thus, the performance of the dynamic recom-

mendation policy decreases at t = 2. Therefore, the overall performance of a dynamic separating

recommendation policy is decreasing in ε. In particular, when θ1 = θ2 (i.e. perfect correlation),

the agents learn θ2 perfectly and the performance of the recommendation policy at t = 2 is the

same as that of the full information disclosure mechanism.

Next, consider a case where the principal employs a dynamic pooling recommendation policy.

When the correlation between θ1 and θ2 is high, the principal may prefer to use a dynamic pooling

recommendation policy so as to not reveal θ1 perfectly at t = 1, and consequently, increase

his information superiority at t = 2 as compared to the outcome under a dynamic separating
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recommendation policy. Given a dynamic pooling recommendation policy, let {Θ1,Θ2, . . .Θm}

denote a partition of Θ such that for every θ̂1, θ̃1 ∈ Θ, we have y1(θ̂1) = y2(θ̃1) if and only

if θ̂1, θ̃1 ∈ Θi for some 1 ≤ i ≤ M . That is, if Θi, 1 ≤ i ≤ m, is a singleton, the principal

implements a distinct routing outcome at t = 1 and the drivers perfectly learn the realization

of θ1 at t = 1; if Θi, 1 ≤ i ≤ m, is not a singleton, the principal implements the same

routing outcome for all realization in Θi and the drivers only learn that θ1 ∈ Θi at t = 1.

Similar to the outcome under a dynamic separating recommendation policy, under a dynamic

pooling recommendation policy the principal’s information superiority decreases at t = 2 as the

correlation between θ1 and θ2 increases since the drivers learn the partition to which θ1 belongs.

Therefore, the overall performance of the principal’s optimal dynamic recommendation policy

decreases as the correlation between θ1 and θ2 increases irrespective of the exact form of the

optimal dynamic recommendation policy.

It is clear that the performance of an optimal dynamic pooling recommendation policy at

t = 1 is inferior to that of an optimal dynamic separating recommendation policy. However,the

performance of an optimal dynamic pooling recommendation policy at t = 2 is higher than

that of an optimal dynamic separating recommendation policy since the principal has a higher

information superiority under an optimal dynamic pooling recommendation policy rather than the

one under an optimal dynamic separating recommendation policy. Using a numerical simulation,

we show below that, when the correlation between θ1 and θ2 is high, there are instances where

the principal’s optimal recommendation policy is a dynamic pooling recommendation policy.

Consider a setting where Θ = {L,M,H} with pL = pM = pH = 1
3
. Assume that the transition

matrix P is given by

P :=


pL + 2ε

3
pM − ε

3
pH − ε

3

pL − ε
3

pM + 2ε
3

pH − ε
3

pL − ε
3

pM − ε
3

pH + 2ε
3

 , (38)

where ε ∈ [0, 1] denotes the persistence (i.e. correlation) of route r’s condition over time. Figures

9 and 10 depict the optimal dynamic recommendation policy for two pairs of σ2 and ∆. In the

first example (see Figure 9), the parameters σ2 and ∆ satisfy the condition (22) of Theorem 2,

while in the second example (see Figure 10) they do not satisfy it. As seen in Figures 9a and 9a,

the performance of an optimal dynamic pooling recommendation policy and an optimal dynamic

separating recommendation policy are decreasing in persistence ε. Figures 9b and 9b depict the
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optimal dynamic recommendation policies for high values of ε. As we discussed above, when

the correlation between θ1 and θ2 is high, the principal prefers to employ a dynamic pooling

recommendation policy.
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Fig. 9: Case (iii) - The optimal dynamic recommendation policy for {L,M,H} = {1.3, 2.1, 2.6}
(∆ = 0, σ2 = 0.2867)
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Fig. 10: Case(iii) - The optimal dynamic recommendation policy for different values of
persistence ε, for {L,M,H} = {1.7, 2.3, 2.6} (∆ = 0.2, σ2 = 0.0867)

VII. CONCLUSION

We investigated the problem of information disclosure mechanisms design in transportation

networks. We showed that the principal can improve the social welfare by strategically disclosing
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information to the drivers, and coordinating the routing recommendations she provides to them.

We characterized a condition under which the principal can implement the efficient routing out-

come by utilizing her superior information to provide informational incentives to the drivers. We

also investigated a two-time step dynamic setting where the drivers learn from their experience

at t = 1. We characterized different pieces of information from which the drivers can learn, and

examined the effect of each of them using numerical simulations. For future research, we will

investigate the dynamic setting more extensively and consider the extension of our results for

nonlinear congestion cost functions.
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