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Abstract—Queue length estimation has been a long-standing
problem in transportation systems as it provides an important
component for the design, operation, and performance moni-
toring of signalized intersections. In this paper, we present a
novel estimation algorithm based on trace data from connected
vehicles. In contrast to existing algorithms, our algorithm
only requires a very low level of penetration rate (∼1%) for
connected vehicles. As such, it is already applicable given
the current level of penetration in practice. Moreover, it is
agnostic to the actual value of the penetration rate or any
other information about an intersection. We provide verification
of our algorithm via numerical simulations. We demonstrate
the application of our algorithm using real-world data for four
intersections.

Index Terms—Queue length, signalized intersection, con-
nected vehicles, traffic signal timing

I. INTRODUCTION

The distribution of queue length at signalized intersections
provides crucial information for performance evaluation [1],
[2], design and optimization [3], [4], and real-time operation
[5] of traffic signals in road networks. Traditionally, estima-
tion algorithms are developed based on information collected
via manual surveys, in-ground fixed location sensors (e.g.
loop detectors), or cameras. These algorithms are based on
two types of models: (i) input-output models [6]–[9] that
attempt to estimate the queue by considering the cumulative
arrivals and departures at an intersection; and (ii) shock-
wave models [10], [11] that consider the dynamic process
of formation and dissipation of queues at an intersection.

The main disadvantage of the traditional methods is their
requirement for installation, operation, and maintenance of
physical hardware at every intersection. As such, they have
high capital costs, between $30,000-$60,000 per intersection.
Therefore, they cannot be implemented at a large scale to
cover all intersections in a network. In the U.S., it is estimated
that only about 3% of intersections are instrumented and
monitored in real-time, and the majority of intersections
receive signal re-timing updates only once every three to five
years.

Recent advancement and deployment of connected vehicle
technology has created new possibilities to address the high
capital cost and operational costs of traditional measurements
by physical sensors such as loop detectors. In contrast with
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traditional measurements that provide traffic information at
fixed locations, connected vehicles (CVs) provide spatio-
temporal information about the trajectory of vehicles pass-
ing through an intersection, including GPS location, speed,
heading. This information is typically collected by each CV
in real-time and transmitted to a data center operated by the
car manufacturer or by the fleet owner. For instance, currently
in the U.S. and Europe, Wejo Ltd. and Otonomo Inc. provide
data platforms developed from information acquired from
various car manufactures (OEMs). Similarly, Uber and Didi
estimate traffic conditions based on information obtained
from their vehicle fleets.

As a result, there now are several studies of algorithms for
queue length estimation based on CV data. The authors in
[12]–[14] develop algorithms based on shock-wave models in
which they try to identify critical points for each CV, marking
the time it joins and leaves the queue. The estimation methods
in [15], [16] are based on the travel time for CVs through
an intersection. In [17]–[19], the authors develop a stochastic
framework to estimate the queue length at the end of each
cycle based on the location of CVs. Alternative stochastic
estimation methods are proposed in [20]–[22] based on the
estimation of arrival/departure processes.

A practical limitation of existing queue length estimation
algorithms based on CVs is that they typically require a
penetration rate ∼ 10% or greater to perform well; i.e.
10% of vehicles on road must be connected. While reaching
such targets is plausible in the future, our analysis of the
current penetration rate of CVs in California, using data from
various car manufactures (OEMs), suggests 0.5% − 1.5%
as the average penetration rate of CVs. Additionally, many
estimation algorithms [17]–[21], [23], require the knowledge
of penetration rate at an intersection which is difficult to
obtain without knowing the ground truth for the total numbers
of vehicles in advance. This is especially challenging as
our analysis shows that the average penetration rate can
differ considerably even between two neighboring corridors,
e.g. ∼ 10% relative difference between CA-107 and CA-1
corridors.

In this paper, we propose a novel approach to estimate
queue length at signalized intersections and address the
above limitations. Our estimation algorithm does not require
knowledge of the penetration rate and is applicable for
penetration rates smaller than 1%. In contrast with existing
methods that estimate the queue length on a cycle-by-cycle
basis, we estimate the probability distribution and average
value of queue lengths during selected time intervals, e.g.



Fig. 1: Four signalized intersections along CA-107 corridor

morning peaks during weekdays. We exploit the seasonal
patterns of traffic at intersections to compensate for the low
value of penetration rate of CVs. As we show our algorithm
is agnostic to the penetration rate and makes no additional
assumption about the queue dynamics.

More specifically, we propose a non-parametric estimation
algorithm that is not based on estimating the parameters for
either input-output models or shock-wave models. Hence,
unlike many existing estimation methods, our algorithm does
not depend on the approximation accuracy of a theoretical
model in real-world settings. Moreover, we do not make any
assumption about the penetration rate such as stationarity
in order to estimate it from data. Additionally, we do not
require knowledge about the signal control plan and cycle
timing of traffic signal, or other local measurements at the
intersection. As a result, our algorithm is applicable to almost
all intersections in a network at no additional costs as it
only requires mapping information (accessible via Open
Street Map and Google Maps) in addition to the CV trace
information.

We present a verification of our algorithm through both
numerical simulations and empirical case studies. We show
that our algorithm can successfully recover the queue length
distribution in real-world scenarios and offer information that
is valuable for performance evaluation (e.g. average queue
length) and design and optimization of traffic signals (e.g.
95% percentile value of the queue length distribution). We
briefly discuss one limitation of our algorithm. Since our
approach does not explicitly estimate the queue length for
each individual cycle, it may have limited applicability for
adaptive signal timing control plans that require such real-
time information. Based on our case studies, we discuss
such a limitation and how it can be potentially addressed
by making modifications to our algorithm.

The rest of the paper is organized as follows. We describe
the data used in our real-world case studies in Section II. We
present our analytical framework and estimation algorithms
in Section III-A. We verify our algorithm via numerical
simulations in Section IV. In Section V, we consider four
signalized intersections on CA-107, and demonstrate the ap-
plicability of our algorithms in the real-world. We summarize
the limitation of our algorithm, provide additional comments,
and conclude in Section VI.

II. DATA DESCRIPTION

We use two proprietary datasets for our application. The
first is acquired from Sensys Networks Inc. and includes
measurements from in-ground detectors located down-stream

Fig. 2: The orange rectangles depicts the location of four
in-ground sensors and the set of circles in each color (red,
yellow,purple) depicts the GPS samples for three individual
vehicles on NB of CA-107 and Lomita Blvd Intersection.

of the intersections. The second dataset is acquired from Wejo
Ltd. and contains traces of connected vehicles. Both data sets
cover highway CA-107 (Hawthorne Blvd) on the southwest
side of Los Angeles, CA. The geographical coverage includes
a stretch of 13.5 km between CA-1 (Pacific Coast Highway)
and 166 St. intersections and provides data on four signalized
intersections considered in this paper (see Figure 1). Both
datasets comprise measurements during September, 2019.

A. Detector Dataset

The detector dataset gives measurements of vehicle counts
at a lane level for every outgoing leg of the four intersections
on CA-107. Figure 2 shows the location of these detectors
at the intersection of CA-107 and Lomita Blvd on the north-
bound (NB) direction. For each sensor, the dataset records
the timestamp (in seconds) of every vehicle detection during
September, 2019.

B. Trace Dataset

The trace dataset contains GPS measurements for a set
of connected vehicles with a sampling time of 3 (s). The
vehicles are recent vehicles, manufactured by General Motors
(GM). Each measurement contains (latitude, longitude) of
a vehicle as well as its speed (from vehicle’s speedometer)
and heading direction; see Figure 2. Each CV is equipped
with an enhanced GPS device that increases the accuracy
of measurements to 1.5 (m) enabling us to develop a lane-
level clustering as we discuss in Section V-A. Utilizing both
(latitude, longitude) coordinates and the heading we project
each data point to a road segment. In this paper, we mainly
focus on trajectories along the northbound (NB) direction
on CA-107. By projecting each GPS coordinates onto the
road, we determine coordinates (y, w) with respect to the
road, where y denotes the arc length position of the vehicle
along the road and w denotes its lateral position across the
road. The reference point for y is the intersection of CA-
107 and CA-1, and thus, y ∈ [0, 13.5 (km)]. For w the
reference point is the coordinates of the left edge of the left-
most lane, not including the dedicated left-turn lanes, based
on satellite images. As such, w typically ranges between
[−10 (m), 18 (m)] for a road with two left-turn lane, four
through lanes, and one right-turn lane.

The penetration rate of connected vehicles, denoted by α,
is on average ' 1.5%. We estimate the penetration rate by
counting the number of unique connected vehicles passing



Fig. 3: Queue formation behind an intersection

through each leg of the intersection divided by the total
number of vehicles counted via the vehicle detection sensors.
Note that the algorithm makes no use of the penetration rate.

III. SETUP

A. Analytical Model

We now present the key idea underlying our estimation
approach. Consider a signalized intersection as in Fig. 3.
For each leg of the intersection and a time interval T (e.g.
morning peaks), we assume that the maximum queue length
X (in meters) for each traffic cycle in each lane has a
probability distribution fX where

P{x ≤ X ≤ x} =

∫ x

x

fX(x)dx.

Our goal is to estimate fX from observation of GPS traces.
Let α denotes the penetration level of connected vehicles.
That is, the GPS traces of each vehicle is observed with
probability α; in our dataset α ' 1.5%. Let Y denote
the distance/position from the intersection of each stopped
vehicle we observe from its GPS trace. Conditioned on the
queue length X , Y is a random variable with approximate
distribution

Y ∼ Uniform[0, X] conditioned on X.

So the probability distribution of Y (when we do not know
X) is given by

fY (y) =

∫ ∞
y

1

x
fX(x)dx. (1)

Consequently,

fX(x) = −xdfY (x)

dx
. (2)

Remark 1. The simple collection of CV/probe vehicle stop
positions has a sampling bias. This is because cycles with
longer queues, on average, contain more probe vehicles. This
sampling bias is more significant when the queue length
distribution is wider. However, our approach as described
above explicitly takes into account such a sampling bias.

Remark 2. We note that the estimation approach proposed
above does not require the knowledge of the penetration rate
α. Moreover, it also does not need any information about the
timing plan or cycle lengths at the intersection.

Our model requires dfY (x)
dx ≤ 0 to ensure fX(x) ≥ 0, i.e.,

fY must be monotonically decreasing (with distance from

Fig. 4: Numerical simulation for the distribution of queue -
length X (in meters) vs 8 (m)×N (number of cars).

the intersection). So the main task is to estimate a smooth
and monotone curve from the empirical distribution of fY so
that dfY (x)

dx ≤ 0 and the derivative is (relatively) smooth. We
formulate this task as a quadratic program and determines it
via optimization below.

Remark 3. In constructing the empirical distribution for fY
we assume that the position of observed stopped vehicles are
independent of one another. This assumption is reasonable
when the penetration level is so low that we practically
observe only a few samples for each queue length X .
As we show through numerical simulations, even for high
penetration rate the estimation approach proposed above
gives satisfactory performance.

B. Non-Parametric Estimation

Consider the empirical histogram for fY . Let B =
{b0, b1, ..., bK}, b0 = 0, denote the bin edges and Y =
{y1, ..., yK} denote the associated values for the histogram.
Assume that bi+1−bi = ∆b> 0 for all i. We fit a curve Ŷ =
{ŷ1, ..., ŷK} to the empirical distribution Y ={y1, ..., yK} by
solving the following optimization problem.

Let zi := yi+1−yi

∆b , 1 ≤ i < K, denote the slope of the
histogram moving from bin i to i+1. For the Kth bin, define
zK := 0−yK

∆b , i.e. set yK+1 = 0. Then we can write yi =

−∆b
∑K

j=i zj . Our model requires that zi ≤ 0. Therefore, we
estimate a smooth curve Ŷ = {ŷ1, · · · , ŷK}, parameterized
by its slope Ẑ = {ẑ1, · · · , ẑK}, by solving the following
optimization problem:

min
∑
‖yi − ŷi‖22 + β

∑
‖ẑi+1 − ẑi‖2 (3)

subject to
ẑi ≤ 0, (4)

ŷi = −∆b

K∑
j=i

ẑj , (5)

where we explicitly require the fitted curve to satisfy the
monotonicity condition of our model by (4). The first term
in the objective function denotes the estimation error, while
the second term penalizes high variations in the slope of the
fitted curve to ensure a smooth curve. As such, parameter β
controls the trade-off between estimation error and smooth-
ness of the curve. We note that {ẑ1∆b, 2ẑ2∆b, ...,KẑK∆b}



gives us the estimate of fX at bin edges x = {b1, b2, · · · , bK}
via (2). The optimization problem above can be written as a
quadratic program (QP),

min ẑTP ẑ + qT ẑ

subject to
Gẑ ≤ h,

where P, q,G, h are defined as follows:

P = ATA+ βDTD, (6)
G = IN×N , (7)

h = [0, 0, · · · , 0]
T
, (8)

q = −2AT [y1, y2, · · · , yN ]
T
, (9)

A = −∆b


1 1 · · · 1 1 1
0 1 · · · 1 1 1
...

...
. . .

...
...

...
0 0 · · · 0 1 1
0 0 · · · 0 0 1

 , (10)

D =


-1 1 0 · · · 0 0
0 -1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · -1 1
0 0 0 0 0 -1

 . (11)

C. Average Queue Length

One can estimate the expected queue length E{X} using
the estimated distribution for fX . However, we show below
that E{X} can be estimated directly from data, without first
estimating fX ; as such, it may have the advantage of avoiding
the approximation errors arising in solving the QP.

For the expected queue length E{X} we have,

E{X} =

∫ ∞
0

xfX(x)dx =

∫ ∞
0

−x2 fY (x)

dx
dx

= −x2fY (x)
∣∣∞
0

+ 2

∫ ∞
0

xfY (x)dx = 2E{Y }. (12)

We note that the confidence bounds for {X} is twice the
confidence bounds for E{Y }. Therefore, 95% confidence
interval for the average queue length can by computed as
2Y ± 1.96

#observationssY where Y and sY denote the empirical
mean and standard deviation for Y .

Remark 4. We note that one can also determine a confi-
dence interval for the estimated density for fX above using
Dvoretzky-Kiefer-Wolfowitz (DKW) confidence interval which
provides a uniform bound, or Wilson confidence bound, which
provides a point-wise bound, for the distance between the
empirical distribution and the true distribution. However,
given that in the QP formulation above we modify and further
approximate the empirical fY with a monotone and smooth
function, the estimated confidence bounds may have limited
value.

IV. NUMERICAL SIMULATION

We numerically evaluate the ability of our proposed algo-
rithm to recover the true distribution of queue length fX(x).
The simulation setup is as follows.

We consider queue lengths during morning peak hours 7-
11AM on working days for one month at an intersection.
Let λ(t) denote the average arrival rate to the intersection
at time t. Assuming that the duration of red phase is Tred,
the maximum number of cars N in the queue at the end
of red phase is a Poisson random variable with parameter
λQ(t) :=

∫ t+Tred

t
λ(τ)dτ . We assume that the traffic pattern is

similar during the morning peak. As such λQ(t) is similar for
all cycles during 7-11AM; we denote its average value by λQ.
We note that the realized queue length for each cycle would
be still different even if we assume that λQ(t) is the same
during 7-11AM; they correspond to different realizations of
Poisson(λQ). For our numerical simulation, we set λQ = 15
and assume that the maximum number of cars in the queue
N ∼ Poisson(15) for each cycle. Moreover, each traffic cycle
lasts 120 (s).

Now consider a queue of vehicles at the end of a red
phase. The distance between every two consecutive vehicles
in the queue di, 1 ≤ i ≤ N is random. We assume that
this distance is on average 8 (m) (including one vehicle
length) and set di ∼ U [8 − 2 (m), 8 + 2 (m)]; that is,
each distance di may deviate from 8 (m) by up to 2 (m).
Accordingly, given a realization for the number of cars in
the queue N , we simulate the length of the queue in meters
by assuming that the distance between successive cars is
U [8 − 2 (m), 8 + 2 (m)]. Figure 4 shows the empirical
distribution for queue length X (in meters). We would like to
point out that the randomness in car distances di, makes the
distribution fX(x) slightly different from fN ([x/8]). Most
importantly, fX(x) (queue length in meters) is a continuous
distribution while fN (n), where n = [x/8] (number of
queued cars), is a discrete distribution. Additionally, fX is
slightly left skewed compared to fN .

For the numerical simulation, we consider three penetra-
tion levels for connected vehicles α ∈ {0.5%, 1.5%, 5%}.
Figures 5-7 depict the estimated probability distribution for
queue length (in meters) f̂X , and compares them with the true
distributions fX and fN . Moreover, the estimated average
queue length for each case {0.5% : 111.4 (m), 1.5% :
117.4 (m), 5% : 122.0 (m)}, along with the confidence
bounds, are compared against the true sample average of
queue lengths at 120.5 (m). As it can be seen, the estima-
tion accuracy is satisfactory even for very low penetration
α = 0.5%. Additionally, the estimation accuracy for both
the average queue length and the probability distribution
improves as the penetration rate α increases from 0.5% to
1.5%, and 5%.

As we discussed in the introduction, a particular value that
is critical in both performance evaluation and the design of
timing plan at intersections is the the queue length at specific
quantiles (e.g. 95%). Figure 8 shows the estimation error
vs. quantiles. We note that the estimation error for quantiles



Fig. 5: Numerical simulation for penetration rate α = 0.5% Fig. 6: Numerical simulation for penetration rate α = 1.5%

Fig. 7: Numerical simulation for penetration rate α = 5%
Fig. 8: Numerical simulation - the estimation error for queue
length percentiles F−1

X

above 60% is always less than two times the average distance
between queued vehicles. Moreover, this error is comparable
to the distance between the two distribution Fx (queue length
in meters) and FN (queue length in number of vehicles ×
average vehicle length) which describe the true queue length
distribution in two different ways.

V. EMPIRICAL VERIFICATION

We demonstrate the implementation of our approach for
intersections on CA-107 corridor using real data. We present
the results for four signalized intersections with different
characteristics: (i) Lomita Blvd & CA-107 is a major in-
tersection with one left-turn lane, four through lanes, and no
dedicated right-turn lane; (ii) Torrance Blvd & CA-107 is
a major intersection with two left-turn lanes, four through
lanes, and one right-turn lane; (iii) Talisman St & CA-107 is
an intersection located in front of an outlet, with one left-turn
lane, four through lanes, and one-right turn lane leading to
the outlet; (iv) 182nd St & CA-107 is an intersection located
in a less congested part of CA-107 corridor towards north,
with one left-turn lane, four through lanes, and one right-
turn lane. To empirically verify the result of our approach,
we estimate the queue length using vehicle detection sensors
located at the downstream of the intersection links as well
and compare the results.

A. Lane Separation & Lane-Specific Queues

In Sections III and IV, we considered the case where the
queue length is identical for all lanes. So we did not need
to explicitly consider the geometry of the intersection and
the number/types of lanes in each intersection leg. However,
in the real world, the queue length for each lane can be

different. For instance, vehicles that want to make a right/left
turn queue up in the most right/left lane before they reach the
right/left turn pockets, while vehicles that want to go straight
through the intersection typically choose the middle lanes.
Figure 9 shows the recorded position of stopped vehicles
behind CA-107 & Lomita intersection. As can be seen, the
relative number of observed stopped vehicles with a distance
greater than 200 (m) from the intersection is noticeably
lower for lane 4 compared to lane 1; this suggests that the
average queue length for lane 4 is smaller than that of lane
1. Consequently, we cannot assume that the queue length
distribution is identical across all lanes. Therefore, we need to
first implement a lane assignment algorithm that determines
the lane each stopped vehicles belong to, and then apply our
estimation approach for each lane separately.

To develop our lane assignment algorithm, we consider
the trace data within 30(m) before the intersection assuming
that most vehicles stay within their lanes close to the in-
tersections. Next, focusing on the lateral positions w across
the road, we determine 0.5% and 99.5% percentile for the
empirical distribution of projected trace data on the road.
As such, we estimate the width of the road segment at the
intersection. Assuming that each lane has an average width of
12 ft ' 3.65m, we can estimate the number of lanes. Given
the number of lanes, we then utilize a Gaussian Mixture
Model with tied variance to estimate the lane boundaries; see
Figure 10. Moreover, we utilize additional post-processing
schemes including (i) correcting for erroneous lane change
estimates due to GPS noises for vehicles very close to the
lane boundaries, and (ii) correcting for lane assignments in-
consistent with vehicle movements, e.g. LT lane for vehicles



Fig. 9: 2D histogram of stopped vehicles behind CA-107 &
Lomita intersection (NB direction).

Fig. 10: Histogram of lateral position (across the road) for
stopped vehicles on NB of CA-107 & Lomita intersection.

Fig. 11: Estimated queue length from detection sensors for
morning peak on September 12, 2019

moving straight.

B. Estimation using Vehicle Detection Sensors

We adopt the estimation algorithm proposed in [10] based
on shock-wave theory. The key idea used in the algorithm
is that the discharge rate for vehicles in the queue, which is
observed via sensors at the downstream of the intersection,
is higher than the normal free flow of vehicles when there
is no queue. As such, one can determine the time gap
between consecutive vehicle detections at the downstream,
and identify the time instance where the queue is cleared,
and thereby estimate the number of cars in the queue.

To determine the end of the queue, we identify the first
time (skipping the first vehicle in the green phase) the
detection gap exceeds a given a threshold max gap.We choose
the value of max gap based the nominal time gap between
consecutive vehicles leaving the queue.

We estimate the nominal gap between detections of two
vehicles leaving the queue to be approximately 3 (s). This is
based on our estimate of 14.5(km/h) for how fast the shock-
wave of vehicles clearing the queue propagates backward into
the intersection upstream; see our note in [24] for the detailed
calculation using drone footage. Assuming that the average
distance (including a vehicle length) between two queued
vehicles is 8 (m), vehicles leave the queue with 2 (s) time
gaps. Additionally, for each two consecutive vehicles, the rear

vehicle has to travel the additional distance of 8(m) to reach
the location of the detectors, which takes 1 (s) assuming an
average speed of 30 (km/h).1

Given that the nominal gap is ∼ 3 (s), we set max gap
to 4.5 (s), which adds a 50% margin to the nominal time
gap. We note that experimenting with alternative values of
[4, 5, 6] for max gap, results in very similar estimates for
queue lengths. Figure 11 depicts an example of the estimated
queue lengths for lane 2 during the morning peak 7-11AM
on September 12, 2019, using the detection data.

Remark 5. The traffic signals on CA-107 are actuated, and
thus the phase lengths vary slightly from cycle to cycle.
Unfortunately, the realized phase lengths and cycle timing
are not recorded and cannot incorporated in our estimation
algorithm based on detections. As a result, we develop an
algorithm to estimate the timing of the green phase for NB
based on the vehicle detection data on all four links of the
intersections. Due to space limitation we do not discuss the
details of the algorithm here.

Remark 6. One drawback of using a max gap threshold to
identify the end of the queue is its sensitivity to drivers’ delays
and distractions. That is, if a driver starts moving with some
delay after the front vehicle leaves the queue, the recorded
time gap between the two vehicles can exceed the max gap
threshold. As a result, we may underestimate the queue length
for that cycle. For instance, in Figures 12 for Lomita and
Torrance intersections, there are unexpected small peaks for
queue lengths equal at a single car length that potentially
occurs because of such erroneous detections.

C. Results & Comparison

We implement the proposed estimation algorithm based
on connected vehicles for four intersections on CA-107 (see
Figure 1) and compare the results with those based on vehicle
detections as described in Section V-B.

1Alternatively, we can assume that the nominal time gap has three
components as follows: (i) reaction time for the second vehicle ∼ 1 (s),
(ii) delay for the second vehicle to start moving ∼ 1 (s), and (iii) the time
needed to travel the additional distance of 8 (m) which is ∼ 1 (s).



Fig. 12: Estimated queue length distribution on lane 2 (NB) for intersections on CA-107 from connected vehicles with
α ' 1.5% vs. queue length estimation from in-ground vehicle detection sensors.

Fig. 13: The difference between estimated queue length
percentiles F−1

X using connected vehicles vs. detectors.
Fig. 14: Auto-correlation of queue length at CA-107 &
Lomita intersection.

We set β = 150 and utilize the dataset during morning-
peak (7-11AM) of business days in September, 2019, con-
sisting of approximately 2000 traffic cycles. Using satellite
images of the intersections from Google Maps, we set
the average distance between queued vehicles (including a
vehicle length) to 8.2 m. Due to space limitations, we make
the comparison only for lane 2 on NB direction at each
intersection; we note that vehicles queuing in lane 1 (left-
most lane) and lane 4 (right-most lane) may end up turning
at the intersection, and thus do not end up being detected by
the in-ground detection sensors.

Figure 12 depicts the estimated probability distribution as
well as the average queue length using our non-parametric
estimation algorithm. We note that both estimates are very
close to the results using the in-ground detection sensors.
Notably, the difference in the average queue length is less
than or equal to an average distance between two queued
vehicles; we note that the difference for Lomita intersection
is slightly greater than 8.2m, which as we argued in Remark
6, is potentially due to an underestimation of queue length

using the in-ground detection sensors.
Figure 13 shows the difference between estimated per-

centiles F−1
X using connected vehicles vs. detection sensors.

As can be seen, the difference in queue length percentiles for
90%-98% is less than or equal to twice the average distance
between two queued vehicles. Hence the empirical results
suggest that the estimation method we propose in this paper
can generate information about queue lengths that is accurate
enough for both performance monitoring and the design of
time-of-day traffic cycle plans.

VI. ADDITIONAL DISCUSSION & CONCLUSION

The simulation and empirical results demonstrate the ef-
fectiveness of the estimation algorithm we propose based on
trace data from connected vehicles with very low penetration
levels. A major advantage of estimation from trace data is
the full coverage it provides at all intersections without any
hardware equipment and traffic interruption for their installa-
tion and maintenance. Additionally, it has negligible marginal
costs since the trace data is being collected by various OEMs.



As such, the algorithm proposed here can already be utilized
to monitor the performance of intersections across the road
network, and to estimate the queue lengths necessary for the
design and optimization of time-of-day traffic cycle plans for
each intersection.

The main disadvantage of our approach is its limited ability
to provide accurate real-time queue length measurements for
each cycle individually. However, we note that the existing
algorithms for cycle-by-cycle estimation of queue length rely
heavily on the assumption that they observe at least one CV
in each cycle. At a penetration rate of 1.5% with an average
queue length of 15 cars (∼ 120m), we do not observe any CV
in 80% of cycles. A recent work by [22] suggests to address
such an issue by utilizing information from historical trends.
As such, our estimation algorithm can provide information
to estimate such recent historical trends. More specifically,
one can use our algorithm to estimate the distribution and/or
average queue length during a narrower recent window of
time (e.g. past few hours) in order to be used in such a hybrid
scheme as suggested in [22].

Moreover, we argue that during peak hours when the
traffic flow tends to be more predictable, the performance
of a well-optimized time-of-day traffic cycle plan is as good
as an adaptive traffic cycle control. The authors in [25]
found that in fact that the time-of-day traffic cycle plan
performs better than the adaptive traffic cycle control for
a test site in Anaheim, CA, which is located only 35-40
km away from the intersections on CA-107. While we do
not aim to provide a similar detailed comparison as in [25]
here, we investigate the correlation among consecutive queue
lengths as a proxy for the potential value of adaptive traffic
cycle control. We note that currently, all intersection on
CA-107 employs a coordinated actuated time-of-day cycle
plan. Figure 14 shows the auto-correlation among consecutive
queue lengths (estimated from detection sensors) at CA-107
& Lomita Blvd intersections. As it can be seen, the realized
queue length at the end of each cycle includes very limited
additional information about the queue lengths and traffic
during the next few cycles, beyond the information already
contained in the historical distribution. This suggests that
the use of adaptive traffic cycle has potentially very limited
positive impact on the performance of the traffic signals
during peak hours with normal traffic patterns that do not
deviate significantly from the historical distribution.
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