
Risk Assessment of Autonomous Vehicles across
Diverse Driving Contexts

Akhil Shetty?, Hamidreza Tavafoghi†, Alex Kurzhanskiy‡, Kameshwar Poolla?†, and Pravin Varaiya?

Abstract—Traffic crashes are a leading cause of death in the
US. The crashes cost more than 36,000 lives and close to $1T in
economic loss each year. Autonomous vehicles (AVs) promise a
future without crashes. But deploying AVs without adequately
assessing their safety might lead to an increase in crashes rather
than a reduction. Extensive on-road testing is needed to ensure
that AVs bring the intended safety benefits. However, testing AVs
across all possible driving contexts is impractical. Moreover,
since crashes are rare events, this requires approaches to
evaluate AV safety that account for diversity in driving contexts,
without testing in all possible scenarios. In this paper, we present
a risk assessment framework that uses on-road testing data to
provide insights into the safety of AVs across diverse maneuvers
and environments. We derive human crash risk baselines to
interpret AV safety over the same maneuvers and environments.
We also present use cases for our risk assessment framework
and suggest how regulators could use it to make decisions about
the introduction of AVs in their jurisdictions.

Index Terms—Autonomous vehicles, risk assessment, traffic
safety, crashes.

I. INTRODUCTION

Traffic crashes are a leading cause of death in the US [1].
In 2018, more than 36 thousand lives were lost to mishaps
on the road [2]. Moreover, 20% of these fatalities were
vulnerable road users such as pedestrians and bicyclists. The
economic cost of these crashes is estimated to be close to
$1T [3].

Autonomous Vehicles (AVs) have recently emerged as
a promising solution for eliminating traffic crashes. Since
a majority of these crashes result from human error [4],
AVs aim to usher in an era of near-zero traffic fatalities by
removing humans from the driver’s seat. Billions of dollars
have been invested across the globe in pursuit of this vision
[5]. A report by Intel [6] forecasts that AVs will save 600
thousand lives and $230B in safety costs by 2045.

While AV technology has improved over the last decade,
widespread deployment of AVs is still far from being
achieved. Designing an AV to be safe on the roads has turned
out to be more difficult than originally anticipated. Driv-
ing on the road involves navigating complex environments,
unpredictable road user behavior, and challenging road and
weather conditions. A considerable fraction of crashes are
a direct consequence of these intrinsic challenges of driving
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rather than mistakes made by involved agents [7], [8]. Indeed,
several types of crashes are likely to persist in a future with
AVs [8]–[10].

Recognizing that some crashes are inevitable, risk as-
sessment is essential before AVs are deployed. The AV
industry currently uses three approaches for safety testing:
(i) Simulation, (ii) Closed Circuit, and (iii) On-road. Each
of these approaches has its own advantages and limitations.
Evaluating an AV’s safety performance via simulation allows
testing over billions of miles, but the simulator is only
an approximation of real-world driving. Crashes being rare
events, small differences in the simulated and real-world
environments can translate into large deviations in the infer-
ences drawn about safety performance. Closed Circuit testing
aims to overcome this limitation by replicating real-world
conditions and testing AVs in challenging scenarios. How-
ever, recreating the immense diversity of real-world driving
conditions and road-user behavior is impractical and hence
such testing provides an incomplete appraisal of an AV’s
safety. On-road testing is the gold standard for predicting
an AV’s performance on future deployment on the roads as
there is no gap between the conditions in which the AV is
tested and deployed.

Several companies are now testing their AVs in limited
operational design domains (ODDs) deemed safe enough for
operation. The objectives of on-road testing are: (i) improving
AV technology based on the experience gained from driving
on the roads, and (ii) demonstrating that AVs are indeed safe
enough to be deployed on a large scale. While AV companies
are achieving the first objective, the path to the second seems
less clear. Several works argue that AVs cannot demonstrate
their safety capabilities solely based on on-road testing [11]–
[13]. In particular, a study by the RAND corporation [11]
suggests that AVs would have to be tested over billions of
miles to demonstrate a fatality rate lower than that of human
drivers. It would require decades of testing for current AV
fleets to cover such a distance. On the other hand, the easier
task of demonstrating a lower crash rate would require on
the order of millions of miles of driving. This range is well
within reach of current AV fleets. Since it is conceivable that
lower crash rates would result in lower fatality rates, one
might be tempted to draw conclusions about future safety
benefits of AV technology based on on-road testing.

This argument breaks down if the diversity of driving
scenarios is taken into account. The RAND study [11] uses
crashes per mile as the safety metric for comparing AVs and
human drivers. Since AVs are currently being tested only in



limited ODDs, they are not exposed to the wide variety of
driving conditions and road user behavior that human drivers
come across in billions of miles of cumulative driving every
year. Driving a million miles on sparse rural highways is
very different from covering the same distance in dense urban
settings. Clearly, the context in which these miles are driven
is crucial for interpreting the results of on-road testing. Thus,
crashes per mile is an insufficient metric for judging AV
safety.

This raises the question: How should we assess the crash
risk of AVs? We have argued so far that more information
than just the total number of crashes and miles driven is
needed. Since the promise of AVs is to make our roads safer,
safety metrics must reflect the efficacy of AVs across all
driving contexts that humans encounter. Our risk assessment
framework for AVs should be such that successful testing
on sparse rural highways does not imply that they would be
safe while navigating dense urban intersections. Rather than
having a single performance metric for assessing risk, it is
desirable to have a collection of metrics that capture safety
performance across diverse contexts. In order to do so, we
must first come up with a suitable level of abstraction at
which the diversity of driving contexts can be expressed in
a tractable manner.

The crash typology presented by NHTSA in [14] is a useful
starting point in this endeavour. This typology classifies
crashes into 36 types based on the maneuvers of involved
vehicles leading up to the crash. For instance, the Changing
Lanes crash type involves all crashes involving a lane change.
This typology is motivated by the observation that there is
significant variance in crash risk across driving maneuvers.
For example, left turns are twice as likely to result in a crash
as compared with right turns. This suggests that analyzing
performance across diverse driving maneuvers would be an
important first step towards an effective risk assessment
framework for AVs.

Another important source of diversity is the environment
in which maneuvers are performed. A lane change executed
on urban highways with small traffic gaps has a much greater
crash risk compared to the same maneuver on sparse rural
highways with larger gaps. Foggy weather and slippery roads
can substantially increase crash risk as well. Thus, diversity
of driving environment is another factor that needs to be
captured in our risk assessment framework.

Risk assessment of AVs is of particular interest to regula-
tors who must balance the safety benefits of this promising
technology with its potential pitfalls. Failing to impose the
required safety standards before deploying AVs can be fatal.
For instance, the National Transportation Safety Board con-
cluded that the absence of regulatory oversight contributed
to the fatal crash involving an Uber AV in Tempe, Arizona
[15]. Currently, states are free to set their own standards for
AV testing and deployment. To the best of our knowledge,
there are no standardized safety performance metrics used
by regulators to govern the deployment of AVs in their
jurisdiction. As a result, what kind of testing data should be
disclosed by AV companies to regulators for risk assessment

Fig. 1: Top View of Diamond Street and Pacific Coast
Highway Intersection (Source: Google Maps)

is an open question.
How should the diversity of driving maneuvers and envi-

ronment be taken into account during crash risk assessment
of AVs? We aim to address this question through our work.
Our contributions are as follows:

• We develop a crash risk assessment framework for AVs
that provides insights about an AV’s safety performance
across diverse driving contexts.

• We derive similar crash risk estimates for an average
human driver using police crash reports and fine-grained
vehicle maneuver data. Since AVs are expected to be
significantly better than their human counterparts, these
estimates can be used as a baseline to interpret AV safety
performance.

• We present several use cases for our risk assessment
framework and offer suggestions on how regulators
could use it to make decisions about the introduction
of AVs in their jurisdictions.

II. AV CRASH RISK ASSESSMENT

A. The Challenge of Risk Assessment: An Illustrative Exam-
ple

Consider an AV making an unprotected left turn from
the Pacific Coast Highway (PCH) on to Diamond Street,
as shown in Figure 1. Suppose we wish to estimate the
probability of the AV getting into a crash. Several obstacles
could prevent the AV from making this turn safely:

• Through-moving traffic in the opposite direction on PCH
with a conflicting trajectory,

• Pedestrians on the crosswalk while the AV makes the
left turn,

• Weather conditions that affect visibility and control
for both the AV and neighboring vehicles (e.g., foggy
weather, smoke, night time)

• Uncertainty in the behavior of neighboring vehi-
cles/pedestrians.

An accurate estimate of the AV’s crash probability would
have to take all the above factors into account. First, we
would need an accurate model of vehicle and pedestrian



arrivals at the intersection. Second and arguably more dif-
ficult, is the task of probabilistically modeling the response
of oncoming traffic to the AV’s left turn maneuver. This
includes the time taken to detect the AV (reaction time),
decision process (to slow or not to slow down) and possibly
even evasive maneuvers (e.g., brake, swerve) if the neigh-
boring vehicle was too close to the intersection. Adverse
weather conditions would complicate the situation further by
modifying the behavior of each road user. Arriving at an
accurate estimate of the AV’s crash probability in this specific
scenario using a mechanistic model of road user behavior
seems intractable.

B. Quantifying Crash Risk

This motivates the use of data-driven statistics to describe
crash risk. A common statistic used to describe AV safety per-
formance is crashes or disengagements per mile driven.1 The
appeal of this safety metric lies in its simplicity; all that needs
to be known is the number of crashes or disengagements
encountered by AVs and the total number of miles driven.
Moreover, it provides a seemingly straightforward solution
for comparing AV safety performance with that of humans.
For instance, the crash rate for human driven vehicles in the
US is 1.9 per million miles driven [14]. Considering that AVs
have already been tested on the roads over millions of miles,
it seems reasonable to compare AV crashes per million miles
to the above number.

However, not all miles driven are equal from a traffic
safety standpoint. Crash rates differ significantly depending
on the type of maneuvers performed while driving. As a
case in point, let us compare two maneuvers: (i) maintaining
lane, and (ii) making a left turn. Rear-ends are the most
common cause of crashes while maintaining lane, and can
occur anywhere on the lane. As rear-ends account for 30%
of all crashes [14], we can conclude that there is a probability
of 6.3× 10−7 of getting into a rear-end crash for every mile
of maintaining lane. On the other hand, left turn crashes
can only occur on a short stretch of road leading up to an
intersection. A typical left turn involves covering a distance
of less than 20 m. It is reasonable to assume that human
drivers make less than one left turn per mile on average across
all of driving. Considering that left turns are involved in 7%
of all crashes, we can conclude that the crash probability per
left turn mile must be higher than 1.1×10−5. This is roughly
175 times larger than that for maintaining lane. Clearly, the
type of maneuver matters while assessing crash risk.

The total number of miles driven alone cannot inform
us about the frequency of different types of maneuvers
performed. It would be fair to compare AV performance
with the human baseline so long as they are tested across all
the diverse maneuvers and environments that humans drive
in. However, this is far from the case for AVs at present,

1California DMV requires AV companies to report how often their vehi-
cles disengaged from autonomous mode during tests because of technology
failure or situations requiring the test driver to take manual control of
the vehicle to operate safely. Since each AV company has its own rules
to determine when a disengagement is warranted, the disengagement rates
among companies are not comparable.

Fig. 2: Decomposition of all crashes based on maneuvers of
vehicles involved.

which have only been tested in environments deemed safe
enough for operation. Driving crash-free over millions of
miles of rural highways has very different safety implications
compared to doing the same in dense urban settings. Thus,
focusing on the crashes per mile safety metric can lull us into
a false sense of security about the real safety capabilities of
AVs.

C. Maneuver Level Crash Analysis

We saw in the discussion above how pooling together all
of driving in the bucket of total miles driven hides away
details about an AV’s performance over diverse scenarios
that are crucial to assess its crash risk. A first step in
incorporating such diversity would be to condition driving
based on the type of maneuver. The process of driving can
be classified into two broad maneuver groups: (i) intersection,
and (ii) lane maneuvers. The former includes such maneuvers
as turns and going straight that are related to navigating
through an intersection, while the latter consists of lane-
related maneuvers such as staying in lane and changing
lanes. The frequency of performing these maneuvers depends
crucially on the driving environment. Intersection maneuvers
are much more common in urban driving as opposed to
freeways. Thus, estimating crash risk for specific maneuvers
would enable us to put the safety statistics of AVs into context
and provide better insights into whether their performance is
likely to generalize to regions they haven’t been tested in
before.

III. MODELING CRASH RISK

A. A Simple Maneuver-Level Crash Risk Model

Let us start by developing a simple model to estimate crash
probabilities for specific maneuvers. Let us take the example
of left-turn crashes. We would like to estimate the probability
of a left turn crash at a particular intersection. Suppose each
vehicle making a left turn has a probability p of getting into
a crash. Let f denote the average rate of left turns at this
intersection. Then, the number of left turn crashes C in time
T is distributed as

C ∼ Bin(fT, p). (1)



The maximum likelihood estimate for p in this case is the
empirical rear-end crash probability,

p̂ =
C

fT
. (2)

This provides a simple, intuitive estimate for the probability
of a left-turn crash. Note that this estimate is very similar in
spirit to the crashes per mile statistic, the only difference be-
ing the conditioning on maneuver as opposed to considering
all crashes to be equivalent. More generally, such an estimate
for maneuver m can be expressed as

p̂m =
Cm

fmT
, (3)

where Cm denotes the number of crashes involving maneuver
m in duration T and fm represents the average rate of
maneuver m.

B. Comparing Human and AV Crash Risk

Waymo’s recent safety report [16] described the safety
performance of its AVs over 6.1 million miles of driving in
Maricopa County, Arizona. Notably, it is the first company to
provide a comprehensive breakdown of crashes its AVs were
involved in based on maneuver type. Even so, this does not
allow us to estimate crash probabilities for maneuvers such
as left turns or lane changes since data on the frequency
of such maneuvers remains unavailable. However, the crash
probability per mile of staying in lane can be computed based
on the given data. This enables us to compare AV and human
crash risk for this maneuver.

Four types of crashes can occur while staying in lane:
(i) Rear-end, (ii) Other vehicle merging into lane, (iii)
Road departure, and (iv) Head-on with vehicle in opposite
direction. Together they accounted for 25 of the Waymo’s
47 crashes. Since an overwhelming majority of all miles
driven involves the staying in lane maneuver, the empiri-
cal probability of an AV crashing during this maneuver is
25/(6.1 × 106) = 4.1 × 10−6 per mile driven. In order
to derive a similar estimate for human drivers, we need to
know the number of such crashes and the total vehicle miles
travelled in the same region. There were 97,105 crashes in
Maricopa County over 37.9 billion miles driven in 2019 [17].
While the distribution of all crashes based on maneuver is not
available for Maricopa County, such a breakdown is available
for fatal crashes. Observing that this distribution across crash
types is similar to that for the entire country, we use the
US crash distribution across types to estimate the fraction
of crashes corresponding to the staying in lane maneuver
[14]. This accounts for 70% of all crashes. Therefore, the
human crash probability during the staying in lane maneuver
is (97, 105× 0.7)/(37.9× 109) = 1.8× 10−6 per mile. One
caveat here is that the human crash statistics are based on
police-reports. However, a study by NHTSA [18] found that
30% of all crashes go unreported on average. Accounting for
this, the crash probability estimate turns out to be 2.3×10−6

per mile. Observe that that the AV crash risk for this
maneuver is about twice that for human drivers.

C. Data Required for Estimation

For estimating maneuver-level crash probabilities based on
(3), two quantities must be known:

• Number of crashes involving maneuver m,
• Average rate of maneuver m.

At present, these quantities have not been made publicly
available by most AV companies. Regulations for on-road
testing data disclosure vary based on jurisdiction. While
California requires AV companies operating in the state to
report the circumstances leading to each disengagement, the
state of Arizona has no such requirement. Even in California,
companies are required to report only the total number of
miles driven, not the frequency of maneuvers their AVs were
involved in. Moreover, AVs have been tested in very limited
on-road environments. Thus, even AV companies currently
do not have data on how their AVs would function across
diverse regions and road conditions that humans drive in.
In the absence of this data, it is not possible to estimate
maneuver-level crash probabilities using (3).

IV. LEVERAGING HUMAN DRIVING DATA

Even if the required data were available to compute crash
risk estimates, there is still a need for baselines to interpret
them. The human crash risk for the same maneuvers is an
intuitive benchmark for this purpose. Moreover, even though
AVs might drive differently compared to humans, their crash
risk is likely to be correlated with that of humans due to
intrinsic challenges associated with driving on the roads. As
a case in point, the left turn example discussed in Section II-A
is challenging for both humans and AVs. For maneuvers and
road conditions in which AVs do not have suitable driving
experience, the corresponding crash risk for humans is a
useful indicator of the AV crash risk.

While on-road testing of AVs is at a nascent stage, humans
drive billions of miles on the roads every year across a
multitude of road conditions. As a result, much more data is
available about human driving performance. Two sources of
data are of particular interest in the estimation of maneuver-
level crash risk: (i) Crash Reports, and (ii) Fine-grained
Vehicle Maneuver Data.

A. Crash Reports

Police reports filed in the aftermath of a crash provide
detailed information about the events leading to a crash.
As a part of the broad trend towards making governmental
data openly accessible, many jurisdictions in the US have
uploaded their historical crash data online in an easy-to-query
format. We use one such data source, the Transportation
Injury Mapping System (TIMS) [19], which is a web-based
application that presents crash records for the state of Califor-
nia in a map-centric format. This enables an understanding of
traffic safety in a particular jurisdiction beyond just knowing
the total number of crashes. For instance, we can query the
number of crashes involving a vehicle making a left turn
colliding with a pedestrian at a particular intersection over a
specified time period.



Fig. 3: Torrance, California

B. Fine-grained Vehicle Maneuver Data

As noted in Section III-C, knowledge of crash data alone
is not sufficient to estimate maneuver-level crash risk. The
frequency of vehicle maneuvers is crucial to put the total
number of crashes into context. While vehicle flow and
speed are commonly measured for transportation planning
purposes, fine-grained maneuver level data such as the num-
ber of left turns or lane changes on a particular stretch of road
is typically unknown. Recent advancements in technology
have led to the emergence of companies collecting GPS traces
of vehicles. This has enabled the measurement of previously
inaccessible maneuver level data at scale without having to
rely on expensive instrumentation of traffic infrastructure. We
utilize a trace data set provided by Wejo Ltd., a connected
vehicle data collection company, for a 12.4-mile stretch along
the Pacific Coast Highway in Torrance, California which
includes 29 major signalized intersections (shown in Figure
3). The data set provides information about (location, speed,
heading, accelerations/brakes) of each vehicle at 3 s inter-
vals.These traces were collected from General Motors (GM)
vehicles that were equipped with an enhanced GPS device
with higher accuracy (± 1.5 m) that enables measurement of
location with lane-level precision. We also employ a data set
provided by Sensys Networks Inc. containing measurements
by in-ground sensors at intersections along the same stretch.
This allows us to extract lane-level information about vehicle
flow at 29 intersections on the 12.

Using crash reports, vehicle trace data, and vehicle de-
tection measurements, we can estimate maneuver-level crash
probabilities for an average human driver.

C. Deriving Crash Risk Estimates

Suppose we wish to estimate the probability of a crash
while making a left turn in the region illustrated in Figure 3.
Let Clt denote the number of left turn crashes in this region
between January 2011 and December 2019, i.e., T = 9 yrs.
Let Rlt denote the left turn rate in this region. Using (3), the
probability of a left turn crash on the Pacific Coast Highway
is estimated as

p̂lt =
Clt

RltT
. (4)

Plugging in Clt = 115 and Rlt = 1868.4/hr based on
crash reports and vehicle maneuver data for this region, we

Left Turn

Right Turn

Crossin
g Straight

Changing Lane

Maintaining Lane

10−9

10−8

10−7

10−6

Es
ti

m
at

ed
C

ra
sh

Pr
ob

ab
ili

ty

0

50

100

150

200

N
um

be
r

of
C

ra
sh

es

Fig. 4: Estimated crash probability (red) and number of
crashes (blue) across diverse maneuvers. While maintaining
lane is associated with the most number of crashes, left turns
have the highest crash probability.

have p̂lt = 7.8 × 10−7. Figure 4 illustrates the number of
crashes and estimated crash probability across the maneuvers
discussed in Section II-C. Observe that there is significant
variation in the estimated crash probability across maneuvers.
Although most crashes occur while maintaining lane, left
turns have the highest crash probability among all maneu-
vers. This underscores the importance of incorporating the
frequency of maneuvers for interpreting crash statistics.

V. REFINED MODEL

A. Diversity of Environment

In previous sections, we discussed how crash probabilities
can vary significantly across maneuvers. From human driving
data, we find that there is considerable variance in crash
risk across locations even for the same maneuver. Consider
the Diamond Street and Hawthorne Boulevard intersections
along the Pacific Coast Highway in Torrance, California. The
estimated probability of a crash while making a left turn at
Diamond Street is 6.7 × 10−6, whereas it is 1.7 × 10−7 at
Hawthorne Boulevard. In other words, the average human
driver making a left turn at Diamond Street is more than 20
times as likely to get into a crash as compared with the same
maneuver at Hawthorne Boulevard. Thus, it is important
that the environment in which a maneuver is performed is
taken into account while assessing crash risk. One way to do
this is to model crash risk for (maneuver, intersection) pairs
rather than the maneuver alone as in (3). Consider a vehicle
performing maneuver m at intersection i. Then, the model
in (1) changes to

Ci
m ∼ Bin(f i

mT, pim), (5)

and the associated maximum likelihood estimate for pim is
given by

p̂im =
Ci

m

f i
mT

. (6)

Such crash probabilities for (maneuver, intersection) pairs
can be computed at scale for human drivers using the data
sources discussed in Section IV. Note that in order to derive
meaningful conclusions, these estimates need to be computed
over millions of maneuvers at each intersection. While this is



Intersection
Empirical

Crash Probability
Left Turn Rate

(turns/hr)
95% Lower Confidence

Bound
95% Upper Confidence

Bound
Diamond Street 6.7× 10−6 39.9 4.2× 10−6 1.0× 10−5

8th Street 5.9× 10−6 15.1 2.6× 10−6 1.3× 10−5

Rolling Hills Way 1.6× 10−6 46.2 6.7× 10−7 3.8× 10−6

Calle Mayor 9.8× 10−8 130.1 5.1× 10−9 6.3× 10−7

Palos Verdes Boulevard 9.3× 10−8 136.0 4.9× 10−9 6.1× 10−7

Prospect Avenue 0 30.2 3.8× 10−8 2.0× 10−6

TABLE I: Confidence Intervals for left-turn crash probability at selected intersections with high (Diamond, 8th, Rolling
Hills) and low (Calle, Palos Verdes, Prospect) empirical crash probabilities. Observe that despite Prospect Avenue having
zero crashes, its upper confidence bound is higher than that of Palos Verdes Boulevard since it has a considerably lower left
turn rate.

true for human driving data which has been collected across
millions of drivers over decades, it would take hundreds
of years of on-road testing by AV companies to arrive at
statistically valid estimates. A potential solution to tackle
this dearth of testing data is to model crash risk for broad
classes of intersections rather than modeling each intersection
individually. We present an example of such a classification
based on human crash risk in Section VI-A.

B. Uncertainty about Estimate

While the empirical crash probability estimate in (6) can
be used to assess risk, it has two major drawbacks. First, it is
uninformative for intersections with zero crashes. Moreover,
being a point estimate, it does not quantify the degree of
confidence associated with the estimate. For instance, we
should be much less confident about our estimate for an
intersection with limited crash and flow data. One way to
circumvent both drawbacks is to use confidence intervals of
p to assess risk in addition to the empirical crash probability.
Let [p̂min, p̂max] denote the 95%-confidence interval for p
based on the available data. Even for intersections having
zero crashes, we can be reasonably confident that p̂max

upper bounds the actual crash probability p. We present
such confidence intervals for intersections with high and low
empirical left turn crash probabilities in Table I. We use
the Wilson score with continuity correction method [20] for
deriving these confidence bounds. Notice that even though
Prospect Avenue has zero crashes, its upper confidence bound
is higher than that of Palos Verdes Boulevard since it has a
considerably lower left turn rate.

C. Context of Maneuver

The crash risk estimates derived so far answer the follow-
ing question: What is the apriori probability of a crash while
performing a certain maneuver at a particular location?
Here, the use of apriori indicates that these estimates do not
rely on real-time information such as the locations and behav-
ior of neighboring vehicles, traffic density, weather conditions
or time of day. Such factors that inform the context in which
a maneuver is performed can have a significance influence
on crash risk. For example, the presence of occlusions or
the observation of risky behavior by neighboring vehicles
is an indicator of heightened risk of a crash. While crash

reports contain information about weather conditions and
time of day, insights about neighboring vehicle behavior and
traffic density are generally absent. On the other hand, AV
companies have access to such data from on-road testing.
This can be used to compute crash probabilities for specific
contexts in which maneuvers are performed.

As an example, consider an AV making an unprotected
left turn in the context of its field of view of conflicting
traffic being occluded due to a queue of vehicles in the
opposing lane. Through on-road testing data, AV companies
have access to the number of such left turns made and the
resulting number of crashes. This can be used to calculate
the empirical probability of a crash in this context.

VI. USE CASES

We now present several use cases for the risk assessment
framework developed in previous sections.

A. Classifying Intersections based on Crash Risk

As discussed in Section V-A, modeling crash risk for
individual intersections is an intractable task for AVs. In
such a situation, an intermediate level of abstraction for
environment diversity is required that suitably navigates the
trade-off between accuracy of crash risk estimates and data
scarcity. A potential candidate for such an abstraction is
the classification of intersections based on maneuver level
crash risk. Let us come up with one such taxonomy for the
intersections along the Pacific Coast Highway in Torrance,
California. As seen from Figure 4, maintaining lane and
left turn are the lane and intersection related maneuvers
respectively with the highest crash probability. Let us first
consider a taxonomy of intersections based on the number
of left turn and maintaining lane crashes, as shown on the
left in Figure 5. Observe that Type 4 intersections have a
high number of crashes of both types and hence, can be
considered as hazardous based on this metric. The crash
probabilities for the same intersections are illustrated on the
right in Figure 5. This plot paints a slightly different picture.
For instance, some intersections that are classified as Type 4
based on number of crashes would be classified as Type 2
based on crash probability. The difference between the two
metrics is subtle but nonetheless important. Traffic planners
typically rely on the former metric for identifying hazardous



intersections as they aim to minimize the total number
of crashes in their jurisdiction. On the other hand, crash
probabilities are more relevant for AV fleets as they aim to
minimize their own crash risk rather than the aggregate crash
risk over all road users. Thus, a taxonomy of intersections
based on crash probability is more suitable for incorporating
environment diversity in AV risk assessment; as discussed
in Section V-A, this would enable AVs to aggregate their
performance in a context-aware manner based on the above
taxonomy. Note that the above example is only one out of the
many ways in which environment diversity can be captured
based on crash risk.

B. Route Risk

While it is conceivable that AVs will eliminate a significant
fraction of crashes with improvements in technology, some
types of crashes are likely to persist [7], [10]. As a result,
AVs need to be able to mitigate risk while driving on the
roads. One way to do this is to consider not just delay but
also crash risk in its route planning stage. We now discuss
how an AV can go about estimating this risk.

A route can be expressed as a sequence of intersection-
maneuver pairs R = {rt}Lt=0 where rt = (it,mt) denotes the
tth pair in the sequence. Let Pt represent the crash probability
estimate at the tth step in the sequence. Then, the probability
of a crash occurring over the entire route is given by

P (Crash along route R) = 1−ΠL
t=0(1− Pt), (7)

≈
∑
t

p̂itmt
. (8)

Let us compute such a route risk estimate for the average
human driver along the route shown in Figure 6. This route
involves the following sequence of maneuvers:

1) Left turn from Diamond Street on to Pacific Coast
Highway,

2) Staying in lane between Diamond Street and Carnelian
Street,

3) Going straight through the Carnelian Street intersection,
4) Lane change leading up to Beryl Street intersection,
5) Right turn from Pacific Coast Highway on to Beryl

Street.
Plugging in the crash probability estimates for each of the
maneuvers, we estimate a crash probability of 6.8×10−6 for
the given route.

C. Economic Cost of Crashes

Although the terms crash probability and risk have been
used interchangeably in the preceding sections, crash proba-
bility is not the only risk metric of interest. In particular, the
business case for AV fleets being used for ride-hailing and
delivery services requires an understanding of the economic
costs of crashes. A maneuver level analysis is critical for
such an understanding. For instance, although rear-ends are
the most common type of crashes, crossing path crashes
have the highest economic cost since they cause about
twice the damage as rear-ends on average [14]. The crash
probability estimate derived in (3) can be used to estimate

the corresponding economic cost. Let em denote the average
economic cost of a crash involving maneuver m. Then, the
expected economic cost of a crash involving maneuver m is
given by

Êm = p̂mem. (9)

Let us compare the expected economic cost of left and right
turns along the stretch of Pacific Coast Highway shown
in Figure 3. Using (9) and estimates for economic cost of
crashes from [14], we find that the expected economic cost
over 1000 left turns is $100.8, while that for a right turn is
$14.2. The huge difference in the economic costs of these
two seemingly similar maneuvers suggests that careful route
planning can provide substantial safety benefits. This also
explains why fleet operators such as UPS plan routes that
avoid left turns [21]. Estimates for the expected economic
cost for other maneuvers are presented in Figure 7. Although
the crossing straight maneuver has the highest economic cost
per crash, left turns have the highest expected economic cost
per maneuver since their crash probability is significantly
higher.

VII. CONCLUSION

Autonomous vehicles hold great promise for leading us to
a future without crashes. At the same time, deploying them
without adequate assessment of their safety capabilities might
lead to increase in crashes rather than a reduction. Extensive
on-road testing is crucial to ensure that AVs bring about the
intended safety benefits.

However, testing AVs in all possible driving contexts
faced by humans is impractical. Coupled with the fact that
crashes are rare events requires approaches for evaluating
AV safety that account for diversity in driving contexts, yet
do not require testing over all possible scenarios. In this
paper, we presented one such risk assessment framework
that uses on-road testing data to provide insights into the
safety performance of AVs across diverse maneuvers and
environments. We derived human crash risk baselines that
can be used to interpret an AV’s safety performance over the
same maneuvers and environments. Several applications for
this framework were also presented.

The above risk assessment framework can be used to
inform regulations governing the testing and deployment
of AVs. In particular, it suggests that regulators should
require AV companies to disclose data not only regarding
crashes but also the frequency of the various maneuvers their
AVs performed as well as the context in which they were
performed. Our framework is just one of out of the many
different ways in which diversity of driving contexts can be
accounted for in crash risk assessment. We hope that this
work motivates further research along this thread.
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Fig. 6: Route risk example: Diamond Street to Beryl Street
along Pacific Coast Highway.
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